OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Impact of velocity distribution assumption on simplified laser speckle imaging equation

Julio C Ramirez-San-Juan, Ruben Ramos-Garcia, Ileana Guizar-Iturbide, Gabriel Martinez-Niconoff, and Bernard Choi  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3197-3203 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Since blood flow is tightly coupled to the health status of biological tissue, several instruments have been developed to monitor blood flow and perfusion dynamics. One such instrument is laser speckle imaging. The goal of this study was to evaluate the use of two velocity distribution assumptions (Lorentzian- and Gaussian-based) to calculate speckle flow index (SFI) values. When the normalized autocorrelation function for the Lorentzian and Gaussian velocity distributions satisfy the same definition of correlation time, then the same velocity range is predicted for low speckle contrast (0<C<0.6) and predict different flow velocity range for high contrast. Our derived equations form the basis for simplified calculations of SFI values.

© 2008 Optical Society of America

OCIS Codes
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 20, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 23, 2007
Published: February 22, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Julio C. Ramirez-San-Juan, Ruben Ramos-García, Ileana Guizar-Iturbide, Gabriel Martínez-Niconoff, and Bernard Choi, "Impact of velocity distribution assumption on simplified laser speckle imaging equation," Opt. Express 16, 3197-3203 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Dunn, T. Bolay, M. A. Moskowitz and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  2. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab 25, 830-841 (2005). [CrossRef] [PubMed]
  3. H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002). [CrossRef]
  4. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997). [CrossRef] [PubMed]
  5. A. F. Fercher and J. D. Briers, "Flow Visualization by Means of Single-Exposure Speckle Photography," Opt. Commun. 37, 326-330 (1981). [CrossRef]
  6. J. D. Briers and S. Webster, "Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995). [CrossRef]
  7. J. D. Briers, G. Richards and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999). [CrossRef]
  8. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen and H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8, 559-564 (2003). [CrossRef] [PubMed]
  9. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, W. H. Luo and H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43, 5772-5777 (2004). [CrossRef] [PubMed]
  10. S. Yuan, A. Devor, D. A. Boas and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005). [CrossRef] [PubMed]
  11. A. K. Dunn, A. Devor, A. M. Dale and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Neuroimage 27, 279-290 (2005). [CrossRef] [PubMed]
  12. H. Bolay, U. Reuter, A.K. Dunn, Z.H. Huang, D.A. Boas, M.A. Moskowitz, "Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model," Nat. Med. 8, 136-142 (2002). [CrossRef] [PubMed]
  13. M. Hirao, H. Oku, W. Goto, T. Sugiyama, T. Kobayashi and T. Ikeda, "Effects of adenosine on optic nerve head circulation in rabbits," Exp. Eye Res. 79, 729-735 (2004). [CrossRef] [PubMed]
  14. K. R. Forrester, J. Tulip, C. Leonard, C. Stewart and R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE Trans. Biomed. Eng. 51, 2074-2084 (2004). [CrossRef] [PubMed]
  15. B. Choi, N. M. Kang and J. S. Nelson, "Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skinfold model," Microvasc. Res. 68, 143-146 (2004). [CrossRef] [PubMed]
  16. T. K. Smith, B. Choi, J. C. Ramirez-San-Juan, J. S. Nelson, K. Osann and K. M. Kelly, "Microvascular blood flow dynamics associated with photodynamic therapy and pulsed dye laser irradiation," Lasers Surg. Med.,  38, 532-539 (2006). [CrossRef] [PubMed]
  17. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006). [CrossRef] [PubMed]
  18. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 15, 2188-2190 (2007). [CrossRef]
  19. P. Zakharov, A. Völker, A. Buck, B. Weber and F. Scheffold, "Quantitative modeling of Laser Speckle Imaging," Opt. Lett. 31, 3465-3467 (2006). [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985).
  21. J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proc. IEEE,  53, 1688 (1965). [CrossRef]
  22. J. D. Briers and A. F. Fercher, "A laser speckle technique for the visualization of retinal blood flow," Proc. SPIE 369, 22-28 (1982).
  23. R. Bracewell, The Fourier transform and its applications (Mc Graw-Hill, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig 1. Fig. 2. Fig 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited