OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region

Matthew R. Foreman, Sherif S. Sherif, Peter R. T. Munro, and Peter Török  »View Author Affiliations


Optics Express, Vol. 16, Issue 7, pp. 4901-4917 (2008)
http://dx.doi.org/10.1364/OE.16.004901


View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The forward problem of focusing light using a high numerical aperture lens can be described using the Debye-Wolf integral, however a solution to the inverse problem does not currently exist. In this work an inversion formula based on an eigenfunction representation is derived and presented which allows a field distribution in a plane in the focal region to be specified and the appropriate pupil plane distribution to be calculated. Various additional considerations constrain the inversion to ensure physicality and practicality of the results and these are also discussed. A number of inversion examples are given.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(100.3190) Image processing : Inverse problems
(180.0180) Microscopy : Microscopy

ToC Category:
Physical Optics

History
Original Manuscript: February 27, 2008
Revised Manuscript: March 25, 2008
Manuscript Accepted: March 25, 2008
Published: March 26, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Matthew R. Foreman, Sherif S. Sherif, Peter R. T. Munro, and Peter Török, "Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region," Opt. Express 16, 4901-4917 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-7-4901


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Endo, "Pattern formation method and exposure system," Patent No. 7094521 (2006).
  2. U. Brand, G. Hester, J. Grochmalicki, and R. Pike "Super-resolution in optical data storage," J. Opt. A: Pure Appl. Opt. 1, 794-800 (1999). [CrossRef]
  3. A. Rohrbach, J. Huisken, and E. H. K. Stelzer, "Optical trapping of small particles," in Optical Imaging and Microscopy - Techniques and Advanced Systems, P. Török and F.-J. Kao eds., (Springer, New York 2007).
  4. S. Inoué, "Exploring living cells and molecular dynamics with polarized light microscopy," in Optical Imaging and Microscopy - Techniques and Advanced Systems, P. Török and F.-J. Kao, eds., (Springer, New York 2007).
  5. T. di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento, Suppl. 9, 426-435 (1952). [CrossRef]
  6. D. R. Chowdhury, K. Bhattacharya, S. Sanyal, and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure Appl. Opt. 4, 98-104 (2002). [CrossRef]
  7. D. Gabor, "A new microscopic principle," Nature (London) 161, 777-778 (1948). [CrossRef]
  8. W. H. Lee, "Computer-generated holograms: techniques and applications," Prog. Opt. 16, 119232 (1978).
  9. S.-S. Yu, B. J. Lin, A. Yen, C.-M. Ke, J. Huang, B.-C. Ho, C.-K. Chen, T.-S. Gau, H.-C. Hsieh, and Y.-C. Ku, "Thin-film optimization strategy in high numerical aperture optical lithography I - Principles," J. Microlith. Microfab. Microsyst. 4, 043003 (2005). [CrossRef]
  10. S. S. Sherif, M. R. Foreman, and P. Török, "Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system," Opt. Express (to be published). [PubMed]
  11. M. A. A. Neil, T. Wilson and R. Juškaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000). [CrossRef] [PubMed]
  12. D. Slepian "Prolate spheroidal wave functions, Fourier analysis and uncertainty IV Extensions to many dimensions; Generalised prolate spheroidal functions," Bell Syst. Tech. J. 43, 3009-3057 (1964).
  13. D. Slepian and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty I," Bell Syst. Tech. J. 40, 43-64 (1961).
  14. H. J. Landau and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty II," Bell Syst. Tech. J. 40, 65-84 (1961).
  15. H. J. Landau and H. O. Pollak, "Prolate spheroidal wave functions, Fourier analysis and uncertainty III The dimension of the space of essentially time- and band-limited signals," Bell Syst. Tech. J. 41, 1295-1336 (1962).
  16. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky and C. Ferreira, "Space bandwidth product of optical signals and systems," J. Opt. Soc. Am. A 13, 470-473 (1996). [CrossRef]
  17. M. A. Neifeld, "Information, resolution, and space bandwidth product," Opt. Lett. 18, 1477-1479 (1998). [CrossRef]
  18. J. C. Heurtley, "Hyperspheroidal functions - optical resonators with circular mirrors," Proc. Symp. on Quasi Optics, New York p. 367 (1964).
  19. B. R. Frieden "Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions," Prog. Opt. 9, 311-407 (1971). [CrossRef]
  20. D. Slepian, "Some comments on Fourier analysis, uncertainty and modeling," SIAM Review 25, 379-393 (1983). [CrossRef]
  21. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London, Ser. A 253, 349-357 (1959). [CrossRef]
  22. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, A 253, 358-379 (1959). [CrossRef]
  23. P. Török, P. D. Higdon, and T. Wilson, "On the general properties of polarised light conventional and confocal microscopes," Opt. Commun. 148, 300-315 (1998). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill 1996).
  25. B. Karczewski and E. Wolf, "Comparison of three theoreis of electromagnetic difftraction at an aperture Part I: coherence matrices, Part II: The far field," J. Opt. Soc. Am 56, 1207-19 (1966). [CrossRef]
  26. S. S. Sherif and P. Török, "Pupil plane masks for super-resolution in high numerical aperture focussing," J. Mod. Opt. 51, 2007-2019 (2004).
  27. R. Pike, D. Chana, P. Neocleous, and S. Jiang, "Superresolution in scanning optical systems," in Optical Imaging and Microscopy - Techniques and Advanced Systems, P. Török and F.-J. Kao, eds., (Springer, New York 2007).
  28. T. Zolezzi "Well-posedness criteria in optimization with application to the calculus of variations," in Nonlinear Analysis: Theory, Methods and Applications, 25, 437-453 (1995).
  29. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, (SIAM, Philadelphia, PA. 1997).
  30. T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss, "Single molecule dynamics studied by polarization modulation," Phys. Rev. Lett. 77, 3979-3982 (1996). [CrossRef] [PubMed]
  31. B. Sick, B. Hecht, and L. Novotny "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  32. Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE. 60, 1107-1109 (1972). [CrossRef]
  33. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  34. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002). [CrossRef]
  35. K. C. ToussaintJr., S. Park, J. E. Jureller, and N. F. Scherer, "Generation of optical vector beams with a diffractive optical element interferometer," Opt. Lett 30, 2846-2848 (2005). [CrossRef]
  36. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson "Method for the generation of arbitrary complex vector wave fronts," Opt. Lett. 27, 1929-1931 (2002). [CrossRef]
  37. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  38. W. T. Welford, "Use of Annular Apertures to Increase Focal Depth," J. Opt. Soc. Am. 50, 749-753 (1960). [CrossRef]
  39. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995). [CrossRef]
  40. J. Ojeda-Castañeda, L. R. Berriel-Valdos, and E. Montes, "Spatial filter for increasing the depth of focus," Opt. Lett. 10, 520-523 (1985). [CrossRef] [PubMed]
  41. T. C. Poon and M. Motamedi, "Optical/digital incoherent image processing for extended depth of field," Appl. Opt. 26, 4612-4615 (1987). [CrossRef] [PubMed]
  42. S. S. Sherif and W. T. Cathey, "Depth of field control in incoherent hybrid imaging systems," in Optical Imaging and Microscopy - Techniques and Advanced Systems, P. Török and F.-J. Kao, eds., (Springer, New York 2007).
  43. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 220, 671-680 (1983). [CrossRef] [PubMed]
  44. C. W. McCutcheon,"Generalised Aperture and the Three-Dimensional Diffraction Image," J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  45. J. Ojeda-Castañeda, L. R. Berriel-Valdos, and E. Montes, "Spatial filter for increasing the depth of focus," Opt. Lett 10, 520-522 (1985). [CrossRef] [PubMed]
  46. T. di Francia, "Super-gain antennas and, optical resolving power," Nuovo Cimento 9, 426-438 (1952). [CrossRef]
  47. Z. S. Hegedus and V. Sarafis, "Superresoliving filters in confocally scanned imaging systems," J. Opt. Soc. Am. A 3, 1892-1896 (1986). [CrossRef]
  48. D. J. Innes and A. L. Bloom, "Design of optical systems for use with laser beams," Spectra-Phys. Laser Tech. Bull. 5, 1-10 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited