OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Fresnel diffraction in the case of an inclined image plane

Peter Modregger, Daniel Lübbert, Peter Schäfer, Rolf Köhler, Timm Weitkamp, Michael Hanke, and Tilo Baumbach  »View Author Affiliations

Optics Express, Vol. 16, Issue 7, pp. 5141-5149 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extension of the theoretical formalism of Fresnel diffraction to the case of an inclined image plane is proposed. The resulting numerical algorithm speeds up computation times by typically three orders of magnitude, thus opening the possibility of utilizing previously inapplicable image analysis algorithms for this special type of a non shift-invariant imaging system. This is exemplified by adapting an iterative phase retrieval algorithm developed for electron microscopy to the case of hard x-ray imaging with asymmetric Bragg reflection (the so-called “Bragg Magnifier”). Numerical simulations demonstrate the convergence and feasibility of the iterative phase retrieval algorithm for the case of x-ray imaging with the Bragg Magnifier.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.2990) Imaging systems : Image formation theory
(110.7440) Imaging systems : X-ray imaging
(340.7460) X-ray optics : X-ray microscopy

ToC Category:
Imaging Systems

Original Manuscript: December 14, 2007
Revised Manuscript: January 25, 2008
Manuscript Accepted: January 27, 2008
Published: March 28, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Peter Modregger, Daniel Lübbert, Peter Schäfer, Rolf Köhler, Timm Weitkamp, Michael Hanke, and Tilo Baumbach, "Fresnel diffraction in the case of an inclined image plane," Opt. Express 16, 5141-5149 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge 7th ed. 1999)
  2. C. E. Metz and K. Doi, "Transfer function analysis of radiographic imaging systems," Phys. Med. Biol. 24, 1079-1106 (1979). [CrossRef] [PubMed]
  3. P. Cloetens, W. Ludwig, J. Baruchel, D. van Dyck, J. van Landuyt, J. P. Guigay, and M. Schlenker, "Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron raditaion x-rays," Appl. Phys. Lett. 75, 2912-2914 (1999). [CrossRef]
  4. V. Yu. Ivanov, V. P. Sivokon, and M. A. Vorontsov, "Phase retrieval from a set of intensity measurements: theory and experiment," J. Opt. Soc. Am. A 9, 1515-1524 (1992). [CrossRef]
  5. W. Coene, G. Janssen, M. Op de Beeck, and D. Van Dyck, "Phase retrieval through focus variation for ultraresolution in field-emission transmission electron microscopy," Phys. Rev. Lett. 69, 3743-3746 (1992). [CrossRef] [PubMed]
  6. I. A. Cunningham and R. Shaw, "Signal-to-noise optimization of medical imaging systems," J. Opt. Soc. Am. A 16621-632 (1999). [CrossRef]
  7. A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori, K. Yamauchi, K. Yamamura, and A. Saito, "Deterministic retrieval of surface waviness by means of topography with coherent X-rays," J. Synchrotron Rad. 9, 223-228 (2002). [CrossRef]
  8. T. Panzner, G. Dleber, T. Sant, W. Leitenberger, and U. Pietsch, "Coherence experiments at the white-beam beamline of BESSY II," Thin Sol. Films 5155563-5567 (2007). [CrossRef]
  9. K. D. Mielenz, "Algorithms for Fresnel diffraction at rectangular and circular apertures," J. Res. Natl. Inst. Stand. Technol. 103497-509 (1998). [CrossRef]
  10. P. Modregger, D. Lubbert, P. Schafer, and R. Kohler, "Magnified phase imaging using asymmetric Bragg reflection: experiment and theory," Phys. Rev. B 74 054107-1-054107-10 (2006). [CrossRef]
  11. N. Delen and B. Hooker, "Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach," J. Opt. Soc. Am. A 15, 857-867 (1998). [CrossRef]
  12. N. Delen and B. Hooker, "Verification and comparison of a fast Fourier transform-based full diffraction method for tilted and offset planes," Appl. Opt. 40, 3525-3531 (2001). [CrossRef]
  13. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, "Diffraction enhanced x-ray imaging," Phys. Med. Biol. 422015-2025 (1997). [CrossRef] [PubMed]
  14. P. Modregger, D. Lubbert, P. Schafer, and R. Kohler, "Two dimensional diffraction enhanced imaging algorithm," Appl. Phys. Lett. 90, 193501-1-193501-3 (2007). [CrossRef]
  15. A. C. Kak and M. Slaney "Principles of Computerized Tomographic Imaging," IEEE Press. (1988).
  16. Ya. I. Nesterets, T. E. Gureyev, and S. W. Wilkins, "Polychromaticity in the combined propagationbased/ analyser-based phase-contrast imaging," J. Appl. Phys. D: Appl. Phys. 384259-4271 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited