OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Laser drilling of nano-pores in sandwiched thin glass membranes

Minrui Yu, Hyun-Seok Kim, and Robert H. Blick  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10044-10049 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2519 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a novel method of using an excimer laser to drill ultra-small pores in borosilicate glass membranes. By introducing a thin layer of liquid between sandwiches of two glass slides, we can shrink the pore size and smoothen the surface on the exit side. We are able to push the minimal exit pore diameter down to 90 nm, well below the laser wavelength of 193 nm. This is achieved with substrates over 150 µm thick. Compared to other methods, this technique is fast, inexpensive, and produces high quality smooth pores.

© 2009 OSA

OCIS Codes
(140.2180) Lasers and laser optics : Excimer lasers
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: March 13, 2009
Revised Manuscript: May 18, 2009
Manuscript Accepted: May 27, 2009
Published: June 1, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Minrui Yu, Hyun-Seok Kim, and Robert H. Blick, "Laser drilling of nano-pores in sandwiched thin glass membranes," Opt. Express 17, 10044-10049 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Francey, “A new, low loss laser ablatable substrate for microwave applications,” Microwave J. 47, 104–110 (2004).
  2. M. Datta, T. Osaka, and J. Schultze, Microelectronic Packaging, Part III (CRC Press, 2004).
  3. T. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86(20), 201106 (2005). [CrossRef]
  4. Y. Iga, T. Ishizuka, W. Watanabe, K. Itoh, Y. Li, and J. Nishii, “Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses,” Jpn. J. Appl. Phys. 43(No. 7A), 4207–4211 (2004). [CrossRef]
  5. N. Fertig, A. Tilke, R. Blick, J. Kotthaus, J. Behrends, and G. Bruggencate, “Stable integration of isolated cell membrane patches in a nanomachined aperture,” Appl. Phys. Lett. 77(8), 1218–1220 (2000). [CrossRef]
  6. N. Fertig, R. H. Blick, and J. C. Behrends, “Whole cell patch clamp recording performed on a planar glass chip,” Biophys. J. 82(6), 3056–3062 (2002). [CrossRef] [PubMed]
  7. M. Mayer, J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides, “Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers,” Biophys. J. 85(4), 2684–2695 (2003). [CrossRef] [PubMed]
  8. G. Kopitkovas, T. Lippert, C. David, A. Wokaun, and J. Gobrecht, “Fabrication of micro-optical elements in quartz by laser induced backside wet etching,” Microelectron. Eng. 67–68, 438–444 (2003). [CrossRef]
  9. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16(1), 200–206 (2008). [CrossRef] [PubMed]
  10. W. F. Wonderlin, A. Finkel, and R. J. French, “Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps,” Biophys. J. 58(2), 289–297 (1990). [CrossRef] [PubMed]
  11. E. Neher and B. Sakmann, “Single-channel currents recorded from membrane of denervated frog muscle fibres,” Nature 260(5554), 799–802 (1976). [CrossRef] [PubMed]
  12. W. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959). [CrossRef]
  13. S. Jeong, R. Greif, and R. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D Appl. Phys. 32(19), 2578–2585 (1999). [CrossRef]
  14. X. Zeng, X. Mao, S. Wen, R. Greif, and R. Russo, “Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities,” J. Phys. D Appl. Phys. 37(7), 1132–1136 (2004). [CrossRef]
  15. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007). [CrossRef] [PubMed]
  16. M. Thiyagarajan, “Experimental investigation of 193 nm excimer laser induced plasma in air,” Ph.D. Thesis (University of Wisconsin-Madison, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited