OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Probing dynamics at interfaces: resonance enhanced dynamic light scattering

Markus A. Plum, Werner Steffen, George Fytas, Wolfgang Knoll, and Bernhard Menges  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10364-10371 (2009)
http://dx.doi.org/10.1364/OE.17.010364


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experiments addressing supramolecular dynamics at interfaces are of paramount importance for the understanding of the dynamic behaviour of polymers, particles, or cells at interfaces, transport phenomena to and from surfaces, thin films or membranes. However, there are only few reports in the literature due to the paucity of experimental methods that offer the required spatial and time resolution. Evanescent wave dynamic light scattering originally developed to meet these needs has limited sensitivity and is restricted to glass substrates. Here we report the first experimental realization of a dynamic light scattering experiment close to an interface using surface plasmon polaritons as light source offering a strong increase in the signal to noise ratio and allowing for the use of metallic interfaces. As a proof of concept, we consider the diffusion of particles with radii down to 10nm in dilute dispersions close to a gold surface.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.1990) Scattering : Diffusion
(240.6648) Optics at surfaces : Surface dynamics

ToC Category:
Scattering

History
Original Manuscript: March 26, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: May 7, 2009
Published: June 5, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Markus A. Plum, Werner Steffen, George Fytas, Wolfgang Knoll, and Bernhard Menges, "Probing dynamics at interfaces: resonance enhanced dynamic light scattering," Opt. Express 17, 10364-10371 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-12-10364


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007). [CrossRef]
  2. S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000). [CrossRef] [PubMed]
  3. K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004). [CrossRef]
  4. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007). [CrossRef] [PubMed]
  5. K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986). [CrossRef] [PubMed]
  6. G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996). [CrossRef] [PubMed]
  7. M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998). [CrossRef]
  8. N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000). [CrossRef]
  9. P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007). [CrossRef] [PubMed]
  10. V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009). [CrossRef] [PubMed]
  11. G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004). [CrossRef] [PubMed]
  12. R. B. M. Schasfoort, and A. J. Tudos, Handbook of Surface Plasmon Resonance (RSC Publishing, Cambridge, 2008). [CrossRef]
  13. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998). [CrossRef]
  14. J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev. 108, 462-493 (2008). [CrossRef] [PubMed]
  15. A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002). [CrossRef]
  16. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988).
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  18. E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).
  19. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000). [CrossRef]
  20. Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990). [CrossRef]
  21. J. Happel and H. Brenner, Low Reynolds number Hydrodynamics with special applications to particulate media (Nijhoff, The Hague, 1983), Chap. 7.
  22. S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)
  23. A. Unger, U. Trutschel, and U. Langbein, "Design software for stratified optical systems with planar and cylindrical symmetry," in DGaO-Proceedings 2007; http://www.dgao-proceedings.de/download/108/108_p12.pdf).
  24. WINSPALL is a software which computes the reflectivity of optical multilayer systems. It is based on the fresnel equations and the matrix formalism and can be downloaded from: http://www.mpip-mainz.mpg.de/knoll/soft/
  25. M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003). [CrossRef]
  26. J. Dostálek, Austrian Research Centers GmbH, Nano-System-Technologies TechGate: Donau-City-Straße 1, 1220 Vienna, Austria (personal communication, 2009)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited