OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Autofluorescence imaging of NADH and flavoproteins in the rat brain: insights from Monte Carlo simulations.

Barbara L’ Heureux, Hirac Gurden, and Frédéric Pain  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9477-9490 (2009)
http://dx.doi.org/10.1364/OE.17.009477


View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been recently a renewed interest in using Autofluorescence imaging (AF) of NADH and flavoproteins (Fp) to map brain activity in cortical areas. The recording of these cellular signals provides complementary information to intrinsic optical imaging based on hemodynamic changes. However, which of NADH or Fp is the best candidate for AF functional imaging is not established, and the temporal profile of AF signals is not fully understood. To bring new theoretical insights into these questions, Monte Carlo simulations of AF signals were carried out in realistic models of the rat somatosensory cortex and olfactory bulb. We show that AF signals depend on the structural and physiological features of the brain area considered and are sensitive to changes in blood flow and volume induced by sensory activation. In addition, we demonstrate the feasibility of both NADH-AF and Fp-AF in the olfactory bulb.

© 2009 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 17, 2008
Revised Manuscript: January 30, 2009
Manuscript Accepted: March 9, 2009
Published: May 22, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Barbara L'Heureux, Hirac Gurden, and Frédéric Pain, "Autofluorescence imaging of NADH and flavoproteins in the rat brain: insights from Monte Carlo simulations," Opt. Express 17, 9477-9490 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-12-9477


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Bonhoeffer and GrinvaldA , "Optical Imaging based on intrinsic signals: the methodology" in Brain mapping; the methods," A. W. Toga and J.C. Mazziotta, Eds. (Academic Press, Los Angeles, CA, 1996).
  2. B. Chance, P. Cohen, F. Jöbsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962). [CrossRef] [PubMed]
  3. B. Chance, "The kinetics of flavoprotein and pyridine nucleotide oxidation in cardiac mitochondria in the presence of calcium," FEBS Lett. 26, 315-9 (1972). [CrossRef] [PubMed]
  4. M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, "Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils," Brain. Res. 872, 294-300 (2000). [CrossRef] [PubMed]
  5. R. E. Anderson and F. B. Meyer, "In vivo fluorescent imaging of NADH redox state in brain," Methods Enzymol. 352, 482-94 (2002). [CrossRef] [PubMed]
  6. A. Mayevsky and G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies," Am. J. Physiol. Cell. Physiol. 292, C615-40 (2007). [CrossRef]
  7. K. C. Reinert, R. L. Dunbar, W. Gao, G. Chen, and T. J. Ebner, "Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo," J. Neurophysiol. 92,199-211 (2004). [CrossRef] [PubMed]
  8. K. Shibuki, R. Hishida, H. Murakami, M. Kudoh, T. Kawaguchi, M. Watanabe, S. Watanabe, T. Kouuchi, R. Tanaka, “Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence,” J. Physiol. 549, 919-27 (2003). [CrossRef] [PubMed]
  9. H. Murakami, D. Kamatani, R. Hishida, T. Takao, M. Kudoh, T. Kawaguchi, R. Tanaka, and K. Shibuki, "Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats," Eur. J. Neurosci. 19, 1352-60 (2004). [CrossRef] [PubMed]
  10. M. Tohmi, H. Kitaura, S. Komagata, M. Kudoh, and K. Shibuki, "Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex," J. Neurosci. 26, 11775-85 (2006). [CrossRef] [PubMed]
  11. Y. Kubota, D. Kamatani, H. Tsukano, S. Ohshima, K. Takahashi, R. Hishida, M. Kudoh, S. Takahashi, and K. Shibuki, "Transcranial photo-inactivation of neural activities in the mouse auditory cortex," Neurosci. Res. 60, 422-30 (2008). [CrossRef] [PubMed]
  12. K. C. Reinert, W. Gao, G. Chen, and T. J. Ebner, "Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo," J. Neurosci. Res. 85, 3221-32 (2007). [CrossRef] [PubMed]
  13. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, "Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex," Eur. J. Neurosci. 20, 2664-70 (2004). [CrossRef] [PubMed]
  14. H. Gurden, N. Uchida, and et Z. F. Mainen, "Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake," Neuron 52, 335-45 (2006). [CrossRef] [PubMed]
  15. G. C. Petzold, D. F. Albeanu, T. F. Sato, V. N. Murthy, "Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways," Neuron 58, 897-910 (2008). [CrossRef] [PubMed]
  16. C. W. Shuttleworth, A. M. Brennan, and et J. A. Connor, "NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices," J Neurosci. 23, 3196-208 (2003). [PubMed]
  17. S. A. Prahl, "Optical Absorption of Hemoglobin," http://omlc.ogi.edu/spectra/hemoglobin/index.html
  18. C. C. H. Petersen, "The barrel cortex--integrating molecular, cellular and systems physiology," Pflugers Arch. 447, 126-34 (2003). [CrossRef] [PubMed]
  19. T. A. Woolsey, C. M. Rovainen, S. B. Cox, M. H. Henegar, G. E. Liang, D. Liu, Y. E. Moskalenko, J. Sui, and L. Wei, "Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain," Cereb. Cortex. 6, 647-60 (1991). [CrossRef]
  20. G. M. Shepherd, "Synaptic organization of the mammalian olfactory bulb," Physiol. Rev. 52, 864-917 (1972). [PubMed]
  21. E. Chaigneau, M. Oheim, E. Audinat, and S. Charpak, "Two-photon imaging of capillary blood flow in olfactory bulb glomeruli," Proc. Natl. Acad. Sci. U. S. A. 100, 13081-6 (2003). [CrossRef] [PubMed]
  22. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl., "Physical model for the spectroscopic analysis of cortical intrinsic optical signals," Phys. Med. Biol. 45, 3749-64 (2000). [CrossRef] [PubMed]
  23. N. Plesnila, C. Putz, M. Rinecker, J. Wiezorrek, L. Schleinkofer, A. E. Goetz, and W. M. Kuebler, "Measurement of absolute values of hemoglobin oxygenation in the brain of small rodents by near infrared reflection spectrophotometry," J. Neurosci. Methods 114, 107-17 (2002). [CrossRef] [PubMed]
  24. J. C. Nawroth, C. A. Greer, W. R. Chen, S. B. Laughlin, and G. M. Shepherd, "An energy budget for the olfactory glomerulus," J. Neurosci. 27, 9790-800 (2007). [CrossRef] [PubMed]
  25. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol. 47, 2059-73 (2002). [CrossRef] [PubMed]
  26. E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, "Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation," Neuroimage 35, 89-104 (2007). [CrossRef] [PubMed]
  27. M. Jones, J. Berwick, and et J. Mayhew, "Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex," Neuroimage 15, 474-87 (2002). [CrossRef]
  28. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, "Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain," Neuroimage 10, 304-26 (1999). [CrossRef] [PubMed]
  29. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale1 "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-9 (2003). [CrossRef] [PubMed]
  30. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo Model of Light Propagation in Tissue," Proc. SPIE IS 5, 102-11(1989).
  31. L. Wang, S. L. Jacques, and et L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-46 (1995). [CrossRef] [PubMed]
  32. F. Agner, "Pseudo random number generator;" http://www.agner.org/random/mother.
  33. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764-71 (1979). [PubMed]
  34. R. C. Benson, R. A. Meyer, M.E. Zaruba, and G. M. McKhann, "Cellular autofluorescence--is it due to flavins?," J. Histochem. Cytochem. 27, 44-8 (1979). [CrossRef] [PubMed]
  35. A. M. Brennan, J. A. Connor, and et C. W. Shuttleworth, "Modulation of the amplitude of NAD(P)H fluorescence transients after synaptic stimulation," J. Neurosci. Res. 85, 3233-43 (2007). [CrossRef] [PubMed]
  36. A. M. Brennan, J. A. Connor, and et C. W. Shuttleworth, "NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function," J. Cereb. Blood Flow. Metab. 26, 1389-406 (2006). [CrossRef] [PubMed]
  37. T. R. Husson, A. K. Mallik, J. X. Zhang, and N. P. Issa, "Functional imaging of primary visual cortex using flavoprotein autofluorescence," J. Neurosci. 27, 8665-75 (2007). [CrossRef] [PubMed]
  38. R. Scholz, R. G. Thurman, J. R. Williamson, B. Chance, and T. Bücher, "Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins," J. Biol. Chem. 244, 2317-24 (1969). [PubMed]
  39. F. F. Jöbsis, M. O'Connor, A. Vitale, and H. Vreman, "Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity," J. Neurophysiol. 34, 735-49 (1971). [PubMed]
  40. F. Xu, I. Kida, F. Hyder, and R. G. Shulman, "Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI," Proc Natl Acad Sci U S A. 97,10601-6. (2000). [CrossRef] [PubMed]
  41. B. A. Johnson and M. Leon, "Spatial distribution of [14C]2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early odor reference learning," J Comp Neurol. 37, 6557-66. (1996)
  42. O. Wolfbeis, "Fluorescence of organic natural products," in Molecular Luminescence Spectroscopy. Part 1: Methods and Applications, John Wiley and Sons, ed. (S. G. Schulman, 1985), pp. 167-370.
  43. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-4 (1986). [CrossRef] [PubMed]
  44. M. Jones, J. Berwick, and J. Mayhew, "Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex," Neuroimage 15, 474-87 (2002). [CrossRef] [PubMed]
  45. Prakash, J. D. Biag, S.A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, "Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex," Neuroimage 37Suppl 1, S27-36 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited