OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea

M. Shane Hutson, Borislav Ivanov, Aroshan Jayasinghe, Gilma Adunas, Yaowu Xiao, Mingsheng Guo, and John Kozub  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9840-9850 (2009)
http://dx.doi.org/10.1364/OE.17.009840


View Full Text Article

Enhanced HTML    Acrobat PDF (1651 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-µm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes – an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

© 2009 OSA

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(170.1020) Medical optics and biotechnology : Ablation of tissue

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 1, 2009
Revised Manuscript: May 18, 2009
Manuscript Accepted: May 20, 2009
Published: May 27, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
M. Shane Hutson, Borislav Ivanov, Aroshan Jayasinghe, Gilma Adunas, Yaowu Xiao, Mingsheng Guo, and John Kozub, "Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea," Opt. Express 17, 9840-9850 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-12-9840


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994). [CrossRef] [PubMed]
  2. J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006). [CrossRef] [PubMed]
  3. K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000). [CrossRef] [PubMed]
  4. R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998). [CrossRef]
  5. R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996). [CrossRef] [PubMed]
  6. R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997). [CrossRef]
  7. T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24(2), 87–92 (1999). [CrossRef] [PubMed]
  8. J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004). [CrossRef] [PubMed]
  9. G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003). [CrossRef]
  10. M. L. Copeland, R. J. Maciunas, and G. S. Edwards, “Chapter VII,” in Neurosurgical Topics: Advanced Techniques in Central Nervous System Metastases, R. J. Maciunas, ed. (The American Association of Neurological Surgeons, Park Ridge, IL, 1998).
  11. G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007). [CrossRef] [PubMed]
  12. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007). [CrossRef] [PubMed]
  13. M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002). [CrossRef] [PubMed]
  14. G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003). [CrossRef] [PubMed]
  15. M. S. Hutson, and G. S. Edwards, “Advances in the Physical Understanding of Laser Surgery at 6.45 microns,” in 26th International Free Electron Laser Conference and 11th FEL Users Workshop (Trieste, Italy, 2003) paper: FRAIS01.
  16. V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996). [CrossRef] [PubMed]
  17. J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997). [CrossRef]
  18. W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009). [CrossRef]
  19. Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006). [CrossRef] [PubMed]
  20. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008). [CrossRef]
  21. M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005). [CrossRef] [PubMed]
  22. M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005). [CrossRef] [PubMed]
  23. J. M. J. Madey, “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42(5), 1906–1930 (1971). [CrossRef]
  24. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003). [CrossRef] [PubMed]
  25. W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000). [PubMed]
  26. B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998). [CrossRef] [PubMed]
  27. Y. Domankevitz, M. S. Lee, and N. S. Nishioka, “Effects of irradiance and spot size on pulsed holmium laser ablation of tissue,” Appl. Opt. 32(4), 569–573 (1993). [CrossRef] [PubMed]
  28. U. S. Sathyam, A. Shearin, and S. A. Prahl, “The effects of spot size, pulse energy, and repetition rate on microsecond ablation of gelatin under water,” Proc. SPIE-Int. Soc. Opt. Eng. 2391, 336–344 (1995).
  29. U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996). [CrossRef] [PubMed]
  30. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981). [CrossRef] [PubMed]
  31. B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995). [CrossRef]
  32. M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987). [CrossRef]
  33. F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987). [CrossRef] [PubMed]
  34. B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999). [CrossRef]
  35. A. Vogel, I. Apitz, and V. Venugopalan, “Phase transitions, material ejection, and plume dynamics in pulsed laser ablation of soft biological tissues,” in Oscillations, Waves and Interactions, T. Kurz, U. Parlitz, and U. Kaatze, eds. (Universitätsverlag Göttingen, Göttingen, 2007), pp. 217–258.
  36. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005). [CrossRef]
  37. A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70(3), 1684–1691 (1991). [CrossRef]
  38. J. P. Cummings and J. T. Walsh., “Tissue tearing caused by pulsed laser-induced ablation pressure,” Appl. Opt. 32(4), 494 (1993). [CrossRef] [PubMed]
  39. J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007). [CrossRef] [PubMed]
  40. J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited