OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Tunable structures comprising two photonic crystal slabs – optical study in view of multi-analyte enhanced detection

Lina Shi, Pierre Pottier, Maksim Skorobogatiy, and Yves-Alain Peter  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10623-10632 (2009)
http://dx.doi.org/10.1364/OE.17.010623


View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using finite-difference time-domain method, we characterize the normal-incidence transmission properties of a two slab photonic crystal device in a view of its applications in fluorescence enhancement and multi-analyte detection. Individual slabs consist of a square or a triangular lattice of air holes embedded into a silicon nitride slab. The geometrical parameters are chosen so that the individual slabs operate in a guided resonance regime where strong reflectivity under the normal incidence angle is observed in a broad spectral range. When placed in the close proximity of each other, the two photonic crystal slab system exhibits a narrow Fabry-Perot type transmission peak corresponding to the excitation of a resonant mode in the cavity formed by the two slabs. We then study the effects of the size of the air gap between the two photonic crystal slabs on the spectral position and bandwidth of a resonance transmission peak. Finally, we investigate the electromagnetic energy distributions at the wavelength of a transmission resonance in the double slab photonic crystals. As a final result we demonstrate that this structure can provide electric field enhancement at the slab surface, which can be used for fluorescence enhancement.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(260.2510) Physical optics : Fluorescence
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 30, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: June 2, 2009
Published: June 10, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Lina Shi, Pierre Pottier, Maksim Skorobogatiy, and Yves-Alain Peter, "Tunable structures comprising two photonic crystal slabs – optical study in view of multi-analyte enhanced detection," Opt. Express 17, 10623-10632 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-13-10623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Miyawaki, "Visualization of the spatial and temporal dynamics of intracellular signaling," Dev. Cell 4, 295 (2003). [CrossRef] [PubMed]
  2. T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997). [PubMed]
  3. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007). [CrossRef] [PubMed]
  4. N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007). [CrossRef]
  5. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008). [CrossRef]
  6. N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008). [CrossRef]
  7. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007). [CrossRef]
  8. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003). [CrossRef]
  9. W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005). [CrossRef]
  10. R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  11. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996). [CrossRef]
  12. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997). [CrossRef]
  13. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999). [CrossRef]
  14. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, "Resonant coupling of near-infrared radiation to photonic band structure waveguides," J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  15. V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000). [CrossRef]
  16. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001). [CrossRef]
  17. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  18. M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002). [CrossRef]
  19. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004). [CrossRef] [PubMed]
  20. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004). [CrossRef] [PubMed]
  21. L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005). [CrossRef]
  22. A. Rosenberg, M.W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, and K. Bussmann, "Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum," Opt. Express 13, 6564-6571 (2005). [CrossRef] [PubMed]
  23. K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006). [CrossRef]
  24. Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006). [CrossRef]
  25. T. Prasad, V. L. Colvin, and D. M. Mittleman, "The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy," Opt. Express 15, 16954-16965 (2007). [CrossRef] [PubMed]
  26. J. L. Skinner, A. A. Talin, and D. A. Horsley, "A MEMS light modulator based on diffractive nanohole gratings," Opt. Express 16, 3701-3711 (2008). [CrossRef] [PubMed]
  27. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008). [CrossRef]
  28. Y. Nazirizadeh, J. G. Mller, U. Geyer, D. Schelle, E. Kley, A. T¨unnermann, U. Lemmer, and M. Gerken, "Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters," Opt. Express 16, 7153-7160 (2008). [CrossRef] [PubMed]
  29. G. Alagappan, X. W. Sun, and M. B. Yu, "Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation," J. Opt. Soc. Am. A 25, 1098-1103 (2008). [CrossRef]
  30. S. G. Johnson, "Meep", http://ab-initio.mit.edu/wiki/index.php/Meep.
  31. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  32. W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002). [CrossRef]
  33. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  34. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904-1-013904-4 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited