OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

High temporal resolution OCT using image-based retrospective gating

Madhusudhana Gargesha, Michael W. Jenkins, David L. Wilson, and Andrew M. Rollins  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10786-10799 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High temporal resolution OCT imaging is very advantageous for analyzing cardiac mechanics in the developing embryonic heart of small animals. An image-based retrospective gating technique is presented to increase the effective temporal resolution of an OCT system and to allow visualization of systolic dynamics in 3D. The gating technique employs image similarity measures for rearranging asynchronously acquired input data consisting of a time series of 2D images at each z position along the heart volume, to produce a time sequence of 3D volumes of the beating heart. The study includes a novel robust validation technique, which quantitatively evaluates the accuracy of the gating technique, in addition to visual evaluations by 2D multiplanar reformatting (MPR) and 3D volume rendering. The retrospective gating and validation is demonstrated on a stage 14 embryonic quail heart data set. Using the validation scheme, it is shown that the gating is accurate within a standard deviation of 4.7 ms, which is an order of magnitude shorter than the time interval during which systolic contraction (~50 ms) occurs in the developing embryo. This gating method has allowed, for the first time, clear visualization of systolic dynamics of the looping embryonic heart in 3D.

© 2009 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 11, 2009
Revised Manuscript: April 27, 2009
Manuscript Accepted: May 3, 2009
Published: June 12, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Madhusudhana Gargesha, Michael W. Jenkins, David L. Wilson, and Andrew M. Rollins, "High temporal resolution OCT using image-based retrospective gating," Opt. Express 17, 10786-10799 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express 16(16), 12313–12333 (2008). [CrossRef] [PubMed]
  2. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14(2), 736–748 (2006). [CrossRef] [PubMed]
  3. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  4. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12(3), 030505 (2007). [CrossRef] [PubMed]
  5. M. W. Jenkins, P. Patel, H. Deng, M. M. Montano, M. Watanabe, and A. M. Rollins, “Phenotyping transgenic embryonic murine hearts using optical coherence tomography,” Appl. Opt. 46(10), 1776–1781 (2007). [CrossRef] [PubMed]
  6. L. A. Taber, I. E. Lin, and E. B. Clark, “Mechanics of cardiac looping,” Dev. Dyn. 203(1), 42–50 (1995). [CrossRef] [PubMed]
  7. J. L. Lucitti, K. Tobita, and B. B. Keller, “Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo,” J. Exp. Biol. 208(10), 1877–1885 (2005). [CrossRef] [PubMed]
  8. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature 421(6919), 172–177 (2003). [CrossRef] [PubMed]
  9. Y. H. Gui, K. K. Linask, P. Khowsathit, and J. C. Huhta, “Doppler echocardiography of normal and abnormal embryonic mouse heart,” Pediatr. Res. 40(4), 633–642 (1996). [CrossRef] [PubMed]
  10. R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007). [CrossRef]
  11. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation 106(22), 2771–2774 (2002). [CrossRef] [PubMed]
  12. S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997). [CrossRef] [PubMed]
  13. V. X. D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11, 1650–1658 (2003). [CrossRef] [PubMed]
  14. S. Rugonyi, C. Shaut, A. P. Liu, K. Thornburg, and R. K. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008). [CrossRef] [PubMed]
  15. K. Norozi, L. Thrane, J. Männer, F. Pedersen, I. Wolf, S. Mottl-Link, H. P. Meinzer, A. Wessel, and T. M. Yelbuz, “In vivo visualisation of coronary artery development by high-resolution optical coherence tomography,” Heart 94(2), 130 (2008). [CrossRef] [PubMed]
  16. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007). [CrossRef] [PubMed]
  17. J. Männer, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008). [CrossRef] [PubMed]
  18. W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11(2), 021014 (2006). [CrossRef] [PubMed]
  19. I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008). [CrossRef]
  20. B. A. Filas, I. R. Efimov, and L. A. Taber, “Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart,” Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 290(9), 1057–1068 (2007). [CrossRef]
  21. A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008). [CrossRef]
  22. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009). [CrossRef]
  23. M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, “Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114(2), e35–e36 (2006). [CrossRef] [PubMed]
  24. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94(9), 4256–4261 (1997). [CrossRef] [PubMed]
  25. U. J. Schoepf, C. R. Becker, R. D. Bruening, T. Helmberger, A. Staebler, P. Leimeister, and M. F. Reiser, “Electrocardiographically gated thin-section CT of the lung,” Radiology 212(3), 649–654 (1999). [PubMed]
  26. Y. P. P. Du, E. R. McVeigh, D. A. Bluemke, H. A. Silber, and T. K. F. Foo, “A comparison of prospective and retrospective respiratory navigator gating in 3D MR coronary angiography,” Int. J. Cardiovasc. Imaging 17(4), 287–294, discussion 295–296 (2001). [CrossRef] [PubMed]
  27. J. Albers, J. M. Boese, C. F. Vahl, and S. Hagl, “In vivo validation of cardiac spiral computed tomography using retrospective gating,” Ann. Thorac. Surg. 75(3), 885–889 (2003). [CrossRef] [PubMed]
  28. C. E. Woodhouse, W. R. Janowitz, and M. Viamonte., “Coronary arteries: retrospective cardiac gating technique to reduce cardiac motion artifact at spiral CT,” Radiology 204(2), 566–569 (1997). [PubMed]
  29. A. F. Kopp, S. Schroeder, A. Kuettner, M. Heuschmid, C. Georg, B. Ohnesorge, R. Kuzo, and C. D. Claussen, “Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window,” Radiology 221(3), 683–688 (2001). [CrossRef] [PubMed]
  30. A. F. Kopp, S. Schroeder, A. Kuettner, A. Baumbach, C. Georg, R. Kuzo, M. Heuschmid, B. Ohnesorge, K. R. Karsch, and C. D. Claussen, “Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients,” Eur. Heart J. 23(21), 1714–1725 (2002). [PubMed]
  31. S. A. de Winter, R. Hamers, M. Degertekin, K. Tanabe, P. A. Lemos, P. W. Serruys, J. R. T. C. Roelandt, and N. Bruining, “Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method,” Catheter. Cardiovasc. Interv. 61(1), 84–94 (2004). [CrossRef]
  32. M. Kachelrieß, D.-A. Sennst, W. Maxlmoser, and W. A. Kalender, “Kymogram detection and kymogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart,” Med. Phys. 29(7), 1489–1503 (2002). [CrossRef] [PubMed]
  33. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt. 10(5), 054001 (2005). [CrossRef] [PubMed]
  34. G. M. Treece, R. W. Prager, A. H. Gee, C. J. C. Cash, and L. Berman, Grey-scale gating for freehand 3D ultrasound. IEEE Int. Symp. Biomed. Imag. Proceedings of the first 2002 IEEE Int.Symp.Biomed.Imag.: Marco to Nano, 993–996. 2002. Washington D.C., USA. Ref Type: Conference Proceeding.
  35. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, O. Q. Chughtai, L. M. Peterson, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, An environmental chamber based OCT system for high-throughput longitudinal imaging of the embryonic heart. SPIE Photonics West 2008. Proceedings of BiOS 2008. 2008. San Jose, California. Ref Type: Conference Proceeding.
  36. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  37. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  38. P. Richard, Brent, Algorithms for Minimization without Derivatives (Prentice Hall, Englewood Cliffs, New Jersey 1973).
  39. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, New Jersey 1976).
  40. D. Stalling, H. C. Hege, and M. Zockler, Amira- An Advanced 3D Visualization and Modeling System. http://amira.zib.de . 2007. http://amira.zib.de . Ref Type: Electronic Citation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3162 KB)     
» Media 2: AVI (2705 KB)     
» Media 3: AVI (2926 KB)     
» Media 4: AVI (3276 KB)     
» Media 5: AVI (3404 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited