OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Computational investigation of nanohole array based SPR sensing using phase shift

T. Yang and H. P. Ho  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 11205-11216 (2009)
http://dx.doi.org/10.1364/OE.17.011205


View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new high spatial resolution sensor for monitoring refractive index variations caused by binding of organic and biological molecules to the metallic surface containing arrays of nanoholes. Signal transduction is provided through detecting the optical phase change in the extraordinary optical transmission (EOT) effected by surface plasmon resonance (SPR). These 2D nanoholes are well suited for the sensor chip format in which high dense integration is readily achievable. While the sensor operates at normal illumination, practical implementation of the sensor is much easier in comparison to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. Our results indicate that the scheme has a shot-noise limited sensitivity threshold of 4.37 × 10−9 refractive index units (RIU) and a dynamic range of 0.17 RIU, which compare favorably with typical SPR sensors, particularly in terms of achieving high resolution and wide dynamic range sensor attributes. The phase change is also quite linear over the entire refractive index detection range.

© 2009 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(050.5080) Diffraction and gratings : Phase shift
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 21, 2009
Revised Manuscript: May 18, 2009
Manuscript Accepted: May 18, 2009
Published: June 19, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
T. Yang and H. P. Ho, "Computational investigation of nanohole array based SPR sensing using phase shift," Opt. Express 17, 11205-11216 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-13-11205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999). [CrossRef] [PubMed]
  2. T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).
  3. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef]
  4. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004). [CrossRef] [PubMed]
  5. X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003). [CrossRef]
  6. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [CrossRef] [PubMed]
  7. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003). [CrossRef]
  8. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  9. S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003). [CrossRef]
  10. A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).
  11. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999). [CrossRef]
  12. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003). [CrossRef]
  13. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005). [CrossRef] [PubMed]
  14. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  15. X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001). [CrossRef]
  16. K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002). [CrossRef]
  17. C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003). [CrossRef]
  18. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996). [CrossRef]
  19. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005). [CrossRef]
  20. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998). [CrossRef]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  22. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  23. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004). [CrossRef]
  24. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  25. C. B. Scruby, and L. E. Drain, Laser ultrasonics techniques and applications (LOP Publishing Ltd, 1990), Chap. 3.
  26. R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).
  27. D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).
  28. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited