OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

A low-absorption x-ray energy filter for small-scale applications

Erik Fredenberg, Björn Cederström, Peter Nillius, Carolina Ribbing, Staffan Karlsson, and Mats Danielsson  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11388-11398 (2009)
http://dx.doi.org/10.1364/OE.17.011388


View Full Text Article

Enhanced HTML    Acrobat PDF (1260 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental and theoretical evaluation of an x-ray energy filter based on the chromatic properties of a prism-array lens (PAL). It is intended for small-scale applications such as medical imaging. The PAL approximates a Fresnel lens and allows for high efficiency compared to filters based on ordinary refractive lenses, however at the cost of a lower energy resolution. Geometrical optics was found to provide a good approximation for the performance of a flawless lens, but a field-propagation model was used for quantitative predictions. The model predicted a 0.29 ΔE/E energy resolution and an intensity gain of 6.5 for a silicon PAL at 23.5 keV. Measurements with an x-ray tube showed good agreement with the model in energy resolution and peak energy, but a blurred focal line contributed to a 29% gain reduction. We believe the blurring to be caused mainly by lens imperfections, in particular at the periphery of the lens.

© 2009 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(170.7440) Medical optics and biotechnology : X-ray imaging
(340.0340) X-ray optics : X-ray optics
(350.5610) Other areas of optics : Radiation
(050.1965) Diffraction and gratings : Diffractive lenses
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
X-ray Optics

History
Original Manuscript: March 19, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: June 10, 2009
Published: June 23, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Erik Fredenberg, Björn Cederström, Peter Nillius, Carolina Ribbing, Staffan Karlsson, and Mats Danielsson, "A low-absorption x-ray energy filter for small-scale applications," Opt. Express 17, 11388-11398 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-14-11388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Baldelli, A. Taibi, A. Tuffanelli, M. Gilardoni, and M. Gambaccini, "A prototype of a quasi-monochromatic system for mammography applications," Phys. Med. Biol. 50, 225-240 (2005). [CrossRef]
  2. R. Lawaczeck, V. Arkadiev, F. Diekmann, and M. Krumrey, "Monochromatic x-rays in digital mammography," Invest. Radiol. 40, 33-39 (2005).
  3. F. Sugiro, D. Li, and C. MacDonald, "Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging," Med. Phys. 31, 3288-3297 (2004). [CrossRef]
  4. J. Motz and M. Danos, "Image information content and patient exposure," Med. Phys. 5, 8-22 (1978). [CrossRef] [PubMed]
  5. G. Pfahler, "A roentgen filter and a universal diaphragm and protecting screen," Trans. Am. Roentgen Ray Soc., pp. 217-224 (1906).
  6. E. Fredenberg, B. Cederström, M. Åslund, C. Ribbing, and M. Danielsson, "A Tunable Energy Filter for Medical X-Ray Imaging," X-Ray Optics and Instrumentation 2008, Article ID 635024, 8 pages (2008), http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/635024.
  7. W. Jark, "A simple monochromator based on an alligator lens," X-Ray Spectrom. 33, 455-461 (2004). [CrossRef]
  8. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, "A compound refractive lens for focusing high-energy Xrays," Nature 384, 49-51 (1996). [CrossRef]
  9. B. Cederström, R. Cahn, M. Danielsson, M. Lundqvist, and D. Nygren, "Focusing hard X-rays with old LP’s," Nature 404, 951 (2000).
  10. B. Cederström, C. Ribbing, and M. Lundqvist, "Generalized prism-array lenses for hard x-rays," J. Synchrotron Rad. 12, 340-344 (2005). [CrossRef]
  11. W. Jark, F. Pérennès, M. Matteucci, L. Mancini, L. Montanari, L. Rigon, G. Tromba, A. Somogyi, R. Tucoulou, and S. Bohic, "Focusing X-rays with simple arrays of prism-like structures," J. Synchrotron Rad. 11, 248-253 (2004). [CrossRef]
  12. L. D. Caro and W. Jark, "Diffraction theory applied to X-ray imaging with clessidra prism array lenses," J. Synchrotron Rad. 15, 176-184 (2008). [CrossRef]
  13. C. Fuhse and T. Salditt, "Finite-difference field calculations for two-dimensionally confined x-ray waveguides," Appl. Opt. 45, 4603-4608 (2006). [CrossRef] [PubMed]
  14. Y. V. Kopylov, A. V. Popov, and A. V. Vinogradov, "Application of the parabolic wave equation to X-ray diffraction optics," Opt. Commun. 118, 619-636 (1995). [CrossRef]
  15. V. Kohn, I. Snigireva, and A. Snigirev, "Diffraction theory of imaging with X-ray compound refractive lens," Opt. Commun. 216, 247-260 (2003). [CrossRef]
  16. D. Attwood, Soft x-rays and extreme ultraviolet radiation (Cambridge University Press, 1999), Ch. 9.
  17. B. Cederström, A multi-prism lens for hard x-rays, Ph.D. thesis (Royal Institute of Technology (KTH), Stockholm, 2002), Ch. 5.
  18. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005), Ch. 3.
  19. S. Panknin, A. K. Hartmann, and T. Salditt, "X-ray propagation in tapered waveguides: Simulation and optimization," Opt. Commun. 281, 2779-2783 (2008). [CrossRef]
  20. D. R. Lynch, Numerical Partial Differential Equations for Environmental Scientists and Engineers (Springer, 2005), Ch. 5.
  21. M. Berger, J. Hubbell, S. Seltzer, J.S., Coursey, and D. Zucker, XCOM: Photon Cross Section Database, (National Institute of Standards and Technology, Gaithersburg, MD, 2005), http://physics.nist.gov/xcom.
  22. B. Henke, E. Gullikson, and J. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," Atomic Data and Nuclear Data Tables 54, 181-342 (1993). [CrossRef]
  23. F. Laermer, A. Schilp, K. Funk, and M. Offenberg, "Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications," in Technical Digest MEMS’99, 211-216 (IEEE Robotics and Automation Society, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited