OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device

M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11834-11849 (2009)
http://dx.doi.org/10.1364/OE.17.011834


View Full Text Article

Enhanced HTML    Acrobat PDF (2137 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photorefractive materials are dynamic holographic storage media that are highly sensitive to coherent light fields and relatively insensitive to a uniform light background. This can be exploited to effectively separate ballistic light from multiply-scattered light when imaging through turbid media. We developed a highly sensitive photorefractive polymer composite and incorporated it into a holographic optical coherence imaging system. This approach combines the advantages of coherence-domain imaging with the benefits of holography to form a high-speed wide-field imaging technique. By using coherence-gated holography, image-bearing ballistic light can be captured in real-time without computed tomography. We analyzed the implications of Fourier-domain and image-domain holography on the field of view and image resolution for a transmission recording geometry, and demonstrate holographic depth-resolved imaging of tumor spheroids with 12 µm axial and 10 µm lateral resolution, achieving a data acquisition speed of 8×105 voxels/s.

© 2009 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(160.5320) Materials : Photorefractive materials
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: April 30, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: June 2, 2009
Published: June 29, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, "Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device," Opt. Express 17, 11834-11849 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-14-11834


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, "Life sciences require the third dimension," Curr. Opin. Cell Biol. 18, 117-124 (2006). [CrossRef] [PubMed]
  2. P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, New York, 2003). [CrossRef]
  3. P. Török and F.-J. Kao, Optical Imaging and Microscopy (Springer, Berlin Heidelberg, 2003).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  5. N. Abramson, "Light-in-Flight Recording by Holography," Opt. Lett. 3, 121-123 (1978). [CrossRef] [PubMed]
  6. A. V. Mamaev, L. I. Ivleva, N.M. Polozkov, and S. V. V., "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, vol. 11 of Technical Digest Series, pp. 632-633 (Optical Society of America, 1993).
  7. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, "2-Dimensional Imaging through Diffusing Media Using 150-fs Gated Electronic Holography Techniques," Opt. Lett. 16, 487-489 (1991). [CrossRef] [PubMed]
  8. U. Schnars and W. Jueptner, Digital Holography (Springer, Berlin, 2004).
  9. L. F. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express 13, 5621-5627 (2005). [CrossRef] [PubMed]
  10. K. Jeong, J. J. Turek, and D. D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007). [CrossRef] [PubMed]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, "Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction," Opt. Lett. 20, 1331-1333 (1995). [CrossRef] [PubMed]
  12. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett. 69, 1837-1839 (1996). [CrossRef]
  13. P. Yu, M. Mustata, J. J. Turek, P. M.W. French, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett. 83, 575-577 (2003). [CrossRef]
  14. C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J Phys. D-Appl. Phys. 36, R207-R227 (2003). [CrossRef]
  15. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A Photorefractive Polymer with High Optical Gain and Diffraction Efficiency near 100-Percent," Nature (London) 371, 497-500 (1994). [CrossRef]
  16. D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, "Dynamic holography in a broad-area optically pumped vertical GaAs microcavity," J. Opt. Soc. Am. B 18, 257-263 (2001). [CrossRef]
  17. D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, "Transillumination imaging through scattering media by use of photorefractive polymers," Opt. Lett. 23, 153-155 (1998). [CrossRef]
  18. P. Dean, M. R. Dickinson, and D. P. West, "Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device," Appl. Phys. Lett. 85, 363-365 (2004). [CrossRef]
  19. M. Salvador, J. Prauzner, S. Kober, K. Meerholz, K. Jeong, and D. D. Nolte, "Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device," Appl. Phys. Lett. 93, 231114 (2008). [CrossRef]
  20. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, "Elimination of beam walk-off in low-coherence off-axis photorefractive holography," Opt. Lett. 26, 334-336 (2001). [CrossRef]
  21. K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs," Opt. Express 15, 14,057-14,064 (2007). [CrossRef]
  22. J. A. Parrish, "New Concepts in Therapeutic Photomedicine - Photochemistry, Optical Targeting and the Therapeutic Window," J. Invest. Dermatol. 77, 45-50 (1981). [CrossRef] [PubMed]
  23. P. Yu,M. Mustata, L. L. Peng, J. J. Turek, M. R. Melloch, P. M.W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004). [CrossRef] [PubMed]
  24. Y. Watanabe and M. Sato, "Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera," Opt. Commun. 281, 1889-1895 (2008). [CrossRef]
  25. C. Dunsby, Y. Gu, Z. Ansari, P. M.W. French, L. Peng, P. Yu,M. R. Melloch, and D. D. Nolte, "High-speed depthsectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun. 219, 87-99 (2003). [CrossRef]
  26. R. Bittner and K. Meerholz, Photorefractive Materials and Their Applications 2, vol. 114 of Springer Series in Optical Sciences, chap. Amorphous Organic Photorefractive Materials, pp. 419-486 (Springer, New York, 2007).
  27. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally Enhanced Photorefractive Effect in Polymers," J. Opt. Soc. Am. B 11, 320-330 (1994). [CrossRef]
  28. M. Salvador, F. Gallego-Gomez, S. Kober, and K. Meerholz, "Bipolar charge transport in an organic photorefractive composite," Appl. Phys. Lett. 90, 154102 (2007). [CrossRef]
  29. S. K¨ober, F. Gallego-Gomez, M. Salvador, K. Meerholz, F. B. Kooistra, J. C. Hummelen, F. Mielke, and O. Nuyken, "Improved fullerene-sensitized organic photorefractive polymers for coherence based NIR-imaging," Manuscript in preparation.
  30. E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, "Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination," Nature (London) 418, 959-964 (2002). [CrossRef]
  31. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  32. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Croningolomb, "Femtosecond Temporal Encoding in Barium-Titanate," Opt. Lett. 16, 1984-1986 (1991). [CrossRef] [PubMed]
  33. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared," Opt. Lett. 20, 2330-2332 (1995). [CrossRef] [PubMed]
  34. K. Jeong, L. L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantumwell films," Appl.Opt. 43, 3802-3811 (2004). [CrossRef] [PubMed]
  35. Sutherla . Rm, J. A. Mccredie, and W. R. Inch, "Growth of Multicell Spheroids in Tissue Culture as a Model of Nodular Carcinomas," J. NATL. CANCER I. 46, 113-120 (1971).
  36. G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett. 131, 29-34 (1998). [CrossRef] [PubMed]
  37. P. Hargrave, P.W. Nicholson, D. T. Delpy, and M. Firbank, "Optical properties of multicellular tumour spheroids," Phys. Med. Biol. 41, 1067-1072 (1996). [CrossRef] [PubMed]
  38. L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998). [CrossRef] [PubMed]
  39. K. Jeong, L. L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited