OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Simplified approach to diffraction tomography in optical microscopy

Reto Fiolka, Kai Wicker, Rainer Heintzmann, and Andreas Stemmer  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12407-12417 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel microscopy technique to measure the scattered wavefront emitted from an optically transparent microscopic object. The complex amplitude is decoded via phase stepping in a common-path interferometer, enabling high mechanical stability. We demonstrate theoretically and practically that the incoherent summation of multiple illumination directions into a single image increases the resolving power and facilitates image reconstruction in diffraction tomography. We propose a slice-by-slice object-scatter extraction algorithm entirely based in real space in combination with ordinary z-stepping. Thereby the computational complexity affiliated with tomographic methods is significantly reduced. Using the first order Born approximation for weakly scattering objects it is possible to obtain estimates of the scattering density from the exitwaves.

© 2009 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5070) Image processing : Phase retrieval
(100.6950) Image processing : Tomographic image processing
(110.0180) Imaging systems : Microscopy
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(100.3175) Image processing : Interferometric imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:

Original Manuscript: May 11, 2009
Revised Manuscript: June 12, 2009
Manuscript Accepted: June 22, 2009
Published: July 20, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Reto Fiolka, Kai Wicker, Rainer Heintzmann, and Andreas Stemmer, "Simplified approach to diffraction tomography in optical microscopy," Opt. Express 17, 12407-12417 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955). [CrossRef] [PubMed]
  2. R. D. Allen, G. B. David, and G. Nomarski, “The zeiss-Nomarski differential interference equipment for transmitted-light microscopy,” Z. Wiss. Mikrosk. 69(4), 193–221 (1969). [PubMed]
  3. O. Shimomura, “The discovery of aequorin and green fluorescent protein,” J. Microsc. 217(1), 3–15 (2005). [CrossRef]
  4. L. Liu, J. R. Trimarchi, R. Oldenbourg, and D. L. Keefe, “Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes,” Biol. Reprod. 63(1), 251–258 (2000). [CrossRef] [PubMed]
  5. M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45(3), 460–469 (2006). [CrossRef] [PubMed]
  6. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007). [CrossRef] [PubMed]
  7. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004). [CrossRef] [PubMed]
  8. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef]
  9. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  10. U. Schnars and W. P. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  11. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). [CrossRef] [PubMed]
  12. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009). [CrossRef] [PubMed]
  13. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  14. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005–034008 (2006). [CrossRef]
  15. S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15(21), 13640–13648 (2007). [CrossRef] [PubMed]
  16. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). [CrossRef] [PubMed]
  17. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  18. M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19(7), 074009 (2008). [CrossRef]
  19. N. Fukutake and T. D. Milster, “Proposal of three-dimensional phase contrast holographic microscopy,” Opt. Express 15(20), 12662–12679 (2007). [CrossRef] [PubMed]
  20. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009). [CrossRef] [PubMed]
  21. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(2), 165–176 (2002). [CrossRef] [PubMed]
  22. M. Born, and E. Wolf, Principles of optics,7th ed. (Cambridge University press, 2005).
  23. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969). [CrossRef]
  24. M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective-lenses,” Proc. SPIE 2412, 147–156 (1995). [CrossRef]
  25. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase contrast imaging by an annular illumination microscope,” Appl. Opt. 29(26), 3810–3815 (1990). [CrossRef] [PubMed]
  26. G. W. Ellis, “An Annular Scan Phase-Contrast Scanned Aperture Microscope (Aspsam),” Cell Motil. Cytoskeleton 10, 342–342 (1988).
  27. A. L. Mattheyses and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Biophys. J. 88, 341A–342A (2005).
  28. R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech. 71(1), 45–50 (2008). [CrossRef]
  29. M. van ’t Hoff, V. de Sars, and M. Oheim, “A programmable light engine for quantitative single molecule TIRF and HILO imaging,” Opt. Express 16(22), 18495–18504 (2008). [CrossRef] [PubMed]
  30. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  31. S. Vertu, J.-J. Delaunay, I. Yamada, and O. Haeberlé, “Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space,” Cent. Eur. J. Phys. 7(1), 22-31 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited