OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback

Martin Blazek, Wolfgang Elsäßer, Mark Hopkinson, Patrick Resneau, Michel Krakowski, Mattia Rossetti, Paolo Bardella, Mariangela Gioannini, and Ivo Montrosset  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13365-13372 (2009)
http://dx.doi.org/10.1364/OE.17.013365


View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low coherent light interferometry requires broad bandwidth light sources to achieve high axial resolution. Here, Superluminescent Light Emitting Diodes (SLDs) utilizing Quantum Dot (QD) gain materials are promising devices as they unify large spectral bandwidths with sufficient power at desired emission wavelengths. However, frequently a dip occurs in the optical spectrum that translates into high side lobes in the coherence function thereby reducing axial resolution and image quality. We apply the experimental technique of frequency selective feedback to shape the optical spectrum of the QD-SLD, hence optimizing the coherence properties. For well-selected feedback parameters, a strong reduction of the parasitic side lobes by a factor of 3.5 was achieved accompanied by a power increase of 40% and an improvement of 10% in the coherence length. The experimental results are in excellent agreement with simulations that even indicate potential for further optimizations.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7020) Optical devices : Traveling-wave devices

ToC Category:
Optical Devices

History
Original Manuscript: May 26, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: June 26, 2009
Published: July 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Martin Blazek, Wolfgang Elsäßer, Mark Hopkinson, Patrick Resneau, Michel Krakowski, Mattia Rossetti, Paolo Bardella, Mariangela Gioannini, and Ivo Montrosset, "Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback," Opt. Express 17, 13365-13372 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-16-13365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  2. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007). [CrossRef]
  3. J. M. Schmitt, "Optical coherence tomography (OCT): A Review," IEEE J. Sel. Topics Quantum Electron. 4, 1205-1215 (1999). [CrossRef]
  4. E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005). [CrossRef]
  5. M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000). [CrossRef]
  6. M. Jedrzejewska-Szczerska, "Shaping coherence function of sources used in low-coherent measurement techniques," Eur. Phys. J. Special Top. 144, 203−208 (2007). [CrossRef]
  7. M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007). [CrossRef]
  8. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006). [CrossRef]
  9. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007). [CrossRef]
  10. P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009). [CrossRef]
  11. M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006). [CrossRef]
  12. Y. Zhang, M. Sato, and N. Tanno, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001). [CrossRef]
  13. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003). [CrossRef] [PubMed]
  14. D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003). [CrossRef]
  15. P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009). [CrossRef]
  16. E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002). [CrossRef]
  17. L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. (London) 74, 233-243 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited