OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Light scattering characterization of mitochondrial aggregation in single cells

Xuan-Tao Su, Kirat Singh, Wojciech Rozmus, Christopher Backhouse, and Clarence Capjack  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13381-13388 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three dimensional finite-difference time-domain (FDTD) simulations are employed to show that light scattering techniques may be used to infer the mitochondrial distributions that exist within single biological cells. Two-parameter light scattering plots of the FDTD light scattering spectra show that the small angle forward scatter can be used to differentiate the case of a random distribution of mitochondria within a cell model from that in which the mitochondria are aggregated to the nuclear periphery. Fourier transforms of the wide angle side scatter spectra show a consistent highest dominant frequency, which may be used for size differentiation of biological cells with distributed mitochondria.

© 2009 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(000.4430) General : Numerical approximation and analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1610) Medical optics and biotechnology : Clinical applications
(290.0290) Scattering : Scattering

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 21, 2008
Revised Manuscript: June 1, 2009
Manuscript Accepted: July 15, 2009
Published: July 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Xuan-Tao Su, Kirat Singh, Wojciech Rozmus, Christopher Backhouse, and Clarence Capjack, "Light scattering characterization of mitochondrial aggregation in single cells," Opt. Express 17, 13381-13388 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).
  2. C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005). [CrossRef]
  3. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005). [CrossRef]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef]
  5. X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
  6. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966). [CrossRef]
  7. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood, MA, 2005).
  8. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007). [CrossRef]
  9. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005). [CrossRef]
  10. W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).
  11. L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005). [CrossRef]
  12. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006). [CrossRef]
  13. R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997). [CrossRef]
  14. Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).
  15. G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981). [CrossRef]
  16. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  17. H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, Inc., Hoboken, NJ, 2003). [CrossRef]
  18. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979). [CrossRef]
  19. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008). [CrossRef]
  20. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited