OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

Xiaojing Huang, Huijie Miao, Jan Steinbrener, Johanna Nelson, David Shapiro, Andrew Stewart, Joshua Turner, and Chris Jacobsen  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13541-13553 (2009)
http://dx.doi.org/10.1364/OE.17.013541


View Full Text Article

Acrobat PDF (597 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(110.4280) Imaging systems : Noise in imaging systems
(110.7440) Imaging systems : X-ray imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Microscopy

History
Original Manuscript: June 24, 2009
Revised Manuscript: July 18, 2009
Manuscript Accepted: July 19, 2009
Published: July 23, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xiaojing Huang, Huijie Miao, Jan Steinbrener, Johanna Nelson, David Shapiro, Andrew Stewart, Joshua Turner, and Chris Jacobsen, "Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy," Opt. Express 17, 13541-13553 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-16-13541


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Sayre, J. Kirz, R. Feder, D. M. Kim, and E. Spiller, "Potential operating region for ultrasoft x-ray microscopy of biological specimens," Science 196, 1339-1340 (1977). [CrossRef]
  2. J. Kirz, C. Jacobsen, and M. Howells, "Soft x-ray microscopes and their biological applications," Quart. Rev. Biophys. 28, 33-130 (1995). [CrossRef]
  3. B. Niemann, D. Rudolph, and G. Schmahl, "X-ray microscopy with synchrotron radiation," Appl. Opt. 15, 1883-1884 (1976). [CrossRef]
  4. G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, "Zone-plate X-ray microscopy," Quart. Rev. Biophys. 13, 297-315 (1980). [CrossRef]
  5. G. Schneider, "Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast," Ultramicroscopy 75, 85-104 (1998). [CrossRef]
  6. D. Weiß, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, and G. Schmahl, "Computed tomography of cryogenic biological specimens based on x-ray microscopic images," Ultramicroscopy 84, 185-197 (2000). [CrossRef]
  7. C. Larabell and M. Le Gros, "X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution," Molecular Biology of the Cell 15, 957-962 (2004). [CrossRef]
  8. A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, "X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode x-ray source," Zeitschrift Kristallographie 222, 650-655 (2007). [CrossRef]
  9. G.-C. Yin, M.-T. Tang, Y.-F. Song, F.-R. Chen, K. Liang, F. Duewer,W. Yun, C.-H. Ko, and H.-P. Shieh, "Energytunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution tomography," Appl. Phys. Lett. 88, 241,115 (2006).
  10. H. Rarback, J. M. Kenney, J. Kirz, M. R. Howells, P. Chang, P. J. Coane, R. Feder, P. J. Houzego, D. P. Kern, and D. Sayre, "Recent results from the Stony Brook scanning microscope," in X-ray Microscopy, G. Schmahl and D. Rudolph, eds., vol. 43 of Springer Series in Optical Sciences, pp. 203-215 (Springer-Verlag, Berlin, 1984).
  11. J. Maser, A. Osanna, Y. Wang, C. Jacobsen, J. Kirz, S. Spector, B. Winn, and D. Tennant, "Soft x-ray microscopy with a cryo STXM: I. Instrumentation, imaging, and spectroscopy," J. Microsc. 197, 68-79 (2000). [CrossRef]
  12. A. Kilcoyne, T. Tyliszczak, W. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. Rightor, G. Mitchell, A. Hitchcock, L. Yang, T. Warwick, and H. Ade, "Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source," J. Synchrotron. Radiat. 10, 125-136 (2003). [CrossRef]
  13. D. Sayre, "Prospects for long-wavelength X-ray microscopy and diffraction," in Imaging Processes and Coherence in Physics, M. Schlenker, ed., (Springer-Verlag, Berlin, 198 pp. 229-235 0).
  14. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, "An extension of the methods of x-ray crystallography to allow imaging of micron-size non-crystalline specimens," Nature 400, 342-344 (1999). [CrossRef]
  15. J. Fienup, "Reconstruction of an object from the modulus of its Fourier transform," Opt. Lett. 3, 27-29 (1978). [CrossRef]
  16. R. M. Glaeser, "Radiation Damage and Biological Electron Microscopy," in Physical Aspects of Electron Microscopy and Microbeam Analysis, B. M. Siegel and D. R. Beaman, eds., (Wiley, New York, 1975 pp. 205-227).
  17. D. Sayre, J. Kirz, R. Feder, D. M. Kim, and E. Spiller, "Transmission Microscopy of Unmodified Biological Materials: Comparative Radiation Dosages with Electrons and Ultrasoft X-ray Photons," Ultramicroscopy 2, 337-341 (1977).
  18. N. Bershad and A. Rockmore, "On estimating signal-to-noise ratio using the sample correlation coefficient," IEEE Trans. Inf. Theory 20, 112-113 (1974). [CrossRef]
  19. J. Frank and L. Al-Ali, "Signal-to-noise ratio of electron micrographs obtained by cross correlation," Nature 256, 376-379 (1975). [CrossRef]
  20. H. Wolter, "Spiegelsysteme streifenden Einfalls als abbildende Optiken f¨ur R¨ontgenstrahlen," Ann. Phys. 10, 94-114, 286 (1952). [CrossRef]
  21. B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E=50-30,000 eV, Z=1-92," Atomic Data Nuclear Data Tables 54, 181-342 (1993). [CrossRef]
  22. R. A. London, M. D. Rosen, and J. E. Trebes, "Wavelength choice for soft x-ray laser holography of biological samples," Appl. Opt. 28, 3397-3404 (1989). [CrossRef]
  23. J. M. Cowley and A. F. Moodie, "Fourier Images. I. The Point Source," Proceedings of the Physical Society B 70, 486-496 (1957).
  24. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, "Reconstruction of a yeast cell from x-ray diffraction data," Acta Crystallographica A 62, 248-261 (2006). [CrossRef]
  25. G. Schneider, E. Anderson, S. Vogt, C. Kn¨ochel, D. Weiss, M. Legros, and C. Larabell, "Computed tomography of cryogenic cells," Surf. Rev. Lett. 9, 177-183 (2002). [CrossRef]
  26. J. Kirz, "Phase zone plates for X rays and the extreme UV," J. Opt. Soc. Am. 64, 301-309 (1974). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).
  28. V. Elser, "Phase retrieval by iterated projections," J. Opt. Soc. Am. A 20, 40-55 (2003). [CrossRef]
  29. M. Howells, T. Beetz, H. Chapman, C. Cui, J. Holton, C. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. Shapiro, J. Spence, and D. Starodub, "An assessment of the resolution limitation due to radiationdamage in x-ray diffraction microscopy," J. Electron. Spectrosc. Relat. Phenom. 170, 4-12 (2009). [CrossRef]
  30. Q. Shen, I. Bazarov, and P. Thibault, "Diffractive imaging of nonperiodic materials with future coherent x-ray sources," J. Synchrotron. Radiat. 11, 432-438 (2004). [CrossRef]
  31. A. Rose, "Unified approach to performance of photographic film, television pickup tubes, and human eye," J. Soc. Motion Pict. Eng. 47, 273-294 (1946).
  32. D. Shapiro, P. Thibault, T. Beetz, V. Elser,M. Howells, C. Jacobsen, J. Kirz, E. Lima, H. Miao, A. M. Neiman, and D. Sayre, "Biological imaging by soft x-ray diffraction microscopy," Proc. Natl. Acad. Sci. USA 102, 15,343-15,346 (2005). [CrossRef]
  33. H. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. Howells, R. Rosen, H. He, J. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, "High resolution ab initio three-dimensional x-ray diffraction microscopy," J. Opt. Soc. Am. A 23, 1179-1200 (2006). [CrossRef]
  34. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, "High-resolution scanning x-ray diffraction microscopy," Science 321, 379-382 (2008). [CrossRef]
  35. G. Williams, H. Quiney, A. Peele, and K. Nugent, "Coherent diffractive imaging and partial coherence," Phys. Rev. B 75, 104,102 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited