OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Error Budget Analysis for an Adaptive Optics Optical Coherence Tomography System

Julia W. Evans, Robert J. Zawadzki, Steven M. Jones, Scot S. Olivier, and John S. Werner  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13768-13784 (2009)
http://dx.doi.org/10.1364/OE.17.013768


View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The combination of adaptive optics (AO) technology with optical coherence tomography (OCT) instrumentation for imaging the retina has proven to be a valuable tool for clinicians and researchers in understanding the healthy and diseased eye. The micrometer-isotropic resolution achieved by such a system allows imaging of the retina at a cellular level, however imaging of some cell types remains elusive. Improvement in contrast rather than resolution is needed and can be achieved through better AO correction of wavefront aberration. A common tool for assessing and ultimately improving AO system performance is the development of an error budget. Specifically, this is a list of the magnitude of the constituent residual errors of an optical system so that resources can be directed towards efficient performance improvement. Here we present an error budget developed for the UC Davis AO-OCT instrument indicating that bandwidth and controller errors are the limiting errors of our AO system, which should be corrected first to improve performance. We also discuss the scaling of error sources for different subjects and the need to improve the robustness of the system by addressing subject variability.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 1, 2009
Revised Manuscript: June 18, 2009
Manuscript Accepted: June 22, 2009
Published: July 24, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Julia W. Evans, Robert J. Zawadzki, Steven M. Jones, Scot S. Olivier, and John S. Werner, "Error Budget Analysis for an Adaptive Optics Optical Coherence Tomography System," Opt. Express 17, 13768-13784 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-16-13768


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  2. R. Zawadzki, S. Choi, A. Fuller, J. Evans, B. Hamann, J. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009). [CrossRef] [PubMed]
  3. B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).
  4. M. van Dam, D. Le Mignant, B. Macintosh, “Performance of the Keck Observatory Adaptive-Optics System,” Appl. Opt. 43(29), 5458–5467 (2004). [CrossRef] [PubMed]
  5. J. W. Evans, B. A. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, L. Reza, “Demonstrating sub-nm closed loop MEMS flattening,” Opt. Express 14, 5558–5570 (2006). [CrossRef] [PubMed]
  6. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008). [CrossRef] [PubMed]
  7. E. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006). [CrossRef] [PubMed]
  8. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). [CrossRef] [PubMed]
  9. H. Hofer, P. Artal, B. Singer, J. Aragón, D. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef]
  10. R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007). [CrossRef]
  11. D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007). [CrossRef]
  12. T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).
  13. J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).
  14. D. Chen, S. Jones, D. Silva, S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef]
  15. L. Poyneer, D. Gavel, J. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19(10), 2100–2111 (2002). [CrossRef]
  16. L. Poyneer, J. Véran, “Optimal modal Fourier-transform wavefront control,” J. Opt. Soc. Am. A 22(8), 1515–1526 (2005). [CrossRef]
  17. L. A. Poyneer, B. Macintosh, “Experimental demonstration of phase correction with a 32×32 microelectricalmechanical systems mirror and a spatially filtered wavefront sensor,” J. Opt. Soc. Am. A 21, 810–819 (2004). [CrossRef]
  18. L. Poyneer, D. Dillon, S. Thomas, B. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt. 47(9), 1317–1326 (2008). [CrossRef] [PubMed]
  19. J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.
  20. L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).
  21. J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001). [CrossRef]
  22. J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002). [CrossRef]
  23. M. Nicolle, T. Fusco, G. Rousset, V. Michau, “Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29(23), 2743–2745 (2004). [CrossRef] [PubMed]
  24. P. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000). [CrossRef]
  25. K. Baker, M. Moallem, “Iteratively weighted centroiding for Shack-Hartmann wave-front sensors,” Opt. Express 15(8), 5147–5159 (2007). [CrossRef] [PubMed]
  26. L. A. Poyneer, B. Bauman, B. A. Macintosh, D. Dillon, S. Severson, “Spatially filtered wave-front sensor for high-order adaptive optics,” Opt. Lett. 31, 293–295 (2006). [CrossRef] [PubMed]
  27. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008). [CrossRef]
  28. P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006). [CrossRef] [PubMed]
  29. A. Dubinin, “Human retina imaging: widening of high resolution area,” J. Modern Opt. 55(4), 671–681 (2008). [CrossRef]
  30. E. Logean, E. Dalimier, C. Dainty, “Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations,” Opt. Express 16(22), 348–357 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited