OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Estimation of the effective orientation of the SHG source in primary cortical neurons

Sotiris Psilodimitrakopoulos, Valerie Petegnief, Guadalupe Soria, Ivan Amat-Roldan, David Artigas, Anna M. Planas, and Pablo Loza-Alvarez  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 14418-14425 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we provide, for the first time to our knowledge, the effective orientation of the SHG source in cultured cortical neuronal processes in vitro. This is done by the use of the polarization sensitive second harmonic generation (PSHG) imaging microscopy technique. By performing a pixel-level resolution analysis we found that the SHG dipole source has a distribution of angles centered at θe =33.96°, with a bandwidth of Δθe = 12.85°. This orientation can be related with the molecular geometry of the tubulin heterodimmer contained in microtubules.

© 2009 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(180.4315) Microscopy : Nonlinear microscopy
(110.5405) Imaging systems : Polarimetric imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 18, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 27, 2009
Published: July 31, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Sotiris Psilodimitrakopoulos, Valerie Petegnief, Guadalupe Soria, Ivan Amat-Roldan, David Artigas, Anna M. Planas, and Pablo Loza-Alvarez, "Estimation of the effective orientation of the SHG source in primary cortical neurons," Opt. Express 17, 14418-14425 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002). [CrossRef]
  2. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979). [CrossRef]
  3. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002). [CrossRef] [PubMed]
  4. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  5. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006). [CrossRef]
  6. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  7. S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009). [CrossRef] [PubMed]
  8. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008). [CrossRef] [PubMed]
  9. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008). [CrossRef] [PubMed]
  10. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009). [CrossRef] [PubMed]
  11. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003). [CrossRef] [PubMed]
  12. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999). [CrossRef] [PubMed]
  13. A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008). [CrossRef] [PubMed]
  14. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009). [CrossRef] [PubMed]
  15. W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008). [CrossRef]
  16. G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005). [CrossRef] [PubMed]
  17. S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006). [CrossRef] [PubMed]
  18. C. Odin, C. Heichette, D. Chretien, and Y. Le Grand, “Second harmonic microscopy of axonemes,” Opt. Express 17(11), 9235–9240 (2009). [CrossRef] [PubMed]
  19. A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008). [CrossRef] [PubMed]
  20. H. P. Erickson, “Microtubule surface lattice and subunit structure and observations on reassembly,” J. Cell Biol. 60(1), 153–167 (1974). [CrossRef] [PubMed]
  21. S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007). [CrossRef] [PubMed]
  22. K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008). [CrossRef] [PubMed]
  23. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008). [CrossRef] [PubMed]
  24. V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008). [CrossRef] [PubMed]
  25. O. Nadiarnykh and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17(7), 5794–5806 (2009). [CrossRef] [PubMed]
  26. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007). [CrossRef] [PubMed]
  27. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986). [CrossRef] [PubMed]
  28. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited