OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Fourier transform-second-harmonic generation imaging of biological tissues

Raghu Ambekar Ramachandra Rao, Monal R. Mehta, and Kimani C. Toussaint, Jr.  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14534-14542 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier transform-second-harmonic generation imaging is employed to obtain quantitative metrics of collagen fibers in biological tissues. In particular, the preferred orientation and maximum spatial frequency of collagen fibers for selected regions of interest in porcine trachea, ear, and cornea are determined. These metrics remain consistent when applied to collagen fibers in the ear, which can be expected from observation. Collagen fibers in the trachea are more random with large standard deviations in orientation, and large variations in maximum spatial frequency. In addition, these metrics are used to investigate structural changes through a 3D stack of the cornea. This technique can be used as a quantitative marker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: June 16, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: July 31, 2009
Published: August 3, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Raghu A. Rao, Monal R. Mehta, and Kimani C. Toussaint, "Fourier transform-second-harmonic generation imaging of biological tissues," Opt. Express 17, 14534-14542 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell (Garland Science, 2008).
  2. D. R. Keene, L. Y. Sakai, R. E. Burgeson, "Human bone contains type-III collagen, type-VI collagen, and fibrillin - type-III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex," J. Histochem. Cytochem. 39, 59-69 (1991). [CrossRef] [PubMed]
  3. Y. Komai and T. Ushiki, "The 3-dimensional organization of collagen fibrils in the human cornea and sclera," Invest. Ophthalmol. Vis. Sci. 32, 2244-2258 (1991). [PubMed]
  4. R. C. Billinghurst, L. Dahlberg, M. Ionescu, A. Reiner, R. Bourne, C. Rorabeck, P. Mitchell, J. Hambor, O. Diekmann, H. Tschesche, J. Chen, H. VanWart, and A. R. Poole, "Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage," J. Clin. Invest. 99, 1534-1545 (1997). [CrossRef] [PubMed]
  5. L. Klein and J. Chandrarajan, "Collagen degradation in rat skin but not in intestine during rapid growth - effect on collagen type-1 and type-3 from skin," Proc. Natl. Acad. Sci. USA 74, 1436-1439 (1977). [CrossRef] [PubMed]
  6. S. M. Weis, J. L. Emery, K. D. Becker, D. J. McBride, J. H. Omens, and A. D. McCulloch, "Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim)," Circ. Res. 87, 663-669 (2000). [PubMed]
  7. J. R. Mao and J. Bristow, "The Ehlers-Danlos syndrome: on beyond collagens," J. Clin. Invest. 107, 1063-1069 (2001). [CrossRef] [PubMed]
  8. H. T. Chen, H. F. Wang, M. N. Slipchenko, Y. K. Jung, Y. Z. Shi, J. B. Zhu, K. K. Buhman, and J. X. Cheng, "A multimodal platform for nonlinear optical microscopy and microspectroscopy," Opt. Express 17, 1282-1290 (2009). [CrossRef] [PubMed]
  9. W. L. Chen, T. H. Li, P. J. Su, C. K. Chou, P. T. Fwu, S. J. Lin, D. Kim, P. T. C. So, and C. Y. Dong, "Second harmonic generation chi tensor microscopy for tissue imaging," Appl. Phys. Lett. 94, 3 (2009).
  10. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003). [CrossRef] [PubMed]
  11. M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express 13, 5791-5797 (2005). [CrossRef] [PubMed]
  12. C. H. Yu, S. P. Tai, C. T. Kung, I. J. Wang, H. C. Yu, H. J. Huang, W. J. Lee, Y. F. Chan, and C. K. Sun, "In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy," Opt. Express 15, 11167-11177 (2007). [CrossRef] [PubMed]
  13. S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C. Y. Dong, "Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye," Invest. Ophthalmol. Vis. Sci. 47, 1216-1224 (2006). [CrossRef] [PubMed]
  14. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005). [CrossRef]
  15. G. Cox, E. Kable, A. Jones, I. K. Fraser, F. Manconi, and M. D. Gorrell, "3-dimensional imaging of collagen using second harmonic generation," J. Struct. Biol. 141, 53-62 (2003). [CrossRef] [PubMed]
  16. F. Tiaho, G. Recher, and D. Rouede, "Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy," Opt. Express 15, 12286-12295 (2007). [CrossRef] [PubMed]
  17. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. S. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, "Measurement of muscle disease by quantitative second-harmonic generation imaging," J. Biomed. Opt. 13, 11 (2008). [CrossRef]
  18. N. Morishige, A. J. Wahlert, M. C. Kenney, D. J. Brown, K. Kawamoto, T. Chikama, T. Nishida, and J. V. Jester, "Second-harmonic imaging microscopy of normal human and keratoconus cornea," Invest. Ophthalmol. Vis. Sci. 48, 1087-1094 (2007). [CrossRef] [PubMed]
  19. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, "Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging," Opt. Express 17, 4868-4878 (2009). [CrossRef] [PubMed]
  20. S. Haykin and B. Van Veen, Signals and Systems (Wiley, 2005).
  21. H. G. Adelmann, "Butterworth equations for homomorphic filtering of images," Comput. Biol. Med. 28, 169-181 (1998). [CrossRef] [PubMed]
  22. H. Schomberg and J. Timmer, "The gridding method for image-reconstruction by fourier transformation," IEEE Trans. Med. Imaging 14, 596-607 (1995). [CrossRef] [PubMed]
  23. H. M. Shieh, C. H. Chung, and C. L. Byrne, "Resolution enhancement in computerized tomographic imaging," Appl. Opt. 47, 4116-4120 (2008). [CrossRef] [PubMed]
  24. B. E. A Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 2007).
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  26. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006). [CrossRef]
  27. D. Pandian, C. Ciulla, E. Haacke, J. Jiang, and M. Ayaz, "Complex threshold method for identifying pixels that contain predominantly noise in magnetic resonance images," J. Magn. Reson. Imag. 28, 727-735, (2008). [CrossRef]
  28. J. C. Russ, The Image Processing Handbook (CRC Press, 2007).
  29. B. Josso, D. R. Burton, and M. J. Lalor, "Texture orientation and anisotropy calculation by Fourier transform and principal component analysis," Mech. Syst. Signal Proc. 19, 1152-1161 (2005). [CrossRef]
  30. B. M. Palmer and R. Bizios, "Quantitative characterization of vascular endothelial cell morphology and orientation using Fourier transform analysis," J. Biomech. Eng.-Trans. ASME 119, 159-165 (1997). [CrossRef]
  31. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330-3342 (2002). [CrossRef] [PubMed]
  32. K. Schenke-Layland, "Non-invasive multiphoton imaging of extracellular matrix structures," J. Biophotonics 1, 451-462 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3035 KB)     
» Media 2: MOV (2930 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited