OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Chromophore concentrations, absorption and scattering properties of human skin in-vivo

Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, and Nikiforos Kollias  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14599-14617 (2009)
http://dx.doi.org/10.1364/OE.17.014599


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorption and reduced scattering coefficients of in-vivo human skin provide critical information on non-invasive skin diagnoses for aesthetic and clinical purposes. To date, very few in-vivo skin optical properties have been reported. Previously, we reported absorption and scattering properties of in-vivo skin in the wavelength range from 650 to 1000nm using the diffusing probe in the “modified two-layer geometry”. In this study, we determine the spectra of skin optical properties continuously in the range from 500 to 1000nm. It was found that the concentration of chromophores, such as oxy-hemoglobin, deoxy-hemoglobin, and melanin, calculated based on the absorption spectra of eighteen subjects at wavelengths above and below 600nm were distinct because of the inherent difference in the interrogation region. The scattering power, which is related to the average scatterer’s size, demonstrates a clear contrast between skin phototypes, skin sites, and wavelengths. We also applied venous occlusion on forearms and found that the concentrations of oxy- and deoxy-hemoglobin as assessed at wavelengths above and below 600nm were different. Our results suggest that diffuse reflectance techniques with the visible and near infrared light sources can be employed to investigate the hemodynamics and optical properties of upper dermis and lower dermis.

© 2009 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 27, 2009
Revised Manuscript: July 19, 2009
Manuscript Accepted: July 20, 2009
Published: August 4, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Sheng-Hao Tseng, Paulo Bargo, Anthony Durkin, and Nikiforos Kollias, "Chromophore concentrations, absorption and scattering properties of human skin in-vivo," Opt. Express 17, 14599-14617 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-17-14599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004). [CrossRef] [PubMed]
  2. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004). [CrossRef] [PubMed]
  3. K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005). [CrossRef] [PubMed]
  4. B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996). [CrossRef] [PubMed]
  5. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  6. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998). [CrossRef] [PubMed]
  7. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005). [CrossRef]
  8. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006). [CrossRef]
  9. S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005). [CrossRef] [PubMed]
  10. K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990). [CrossRef] [PubMed]
  11. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005). [CrossRef] [PubMed]
  12. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006). [CrossRef] [PubMed]
  13. S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008). [CrossRef] [PubMed]
  14. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006). [CrossRef] [PubMed]
  15. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998). [CrossRef]
  16. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  17. S. Prahl, "Hemoglobin absorption coefficient," (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  18. S. L. Jacques, "Melanosome absorption coefficient," (1998), http://omlc.ogi.edu/spectra/melanin/mua.html.
  19. N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985). [CrossRef] [PubMed]
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  21. I. M. Braverman, "Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states," J. Invest. Dermatol. 93, 2S-9S (1989). [CrossRef] [PubMed]
  22. S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996). [CrossRef]
  23. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003). [CrossRef] [PubMed]
  24. R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997). [CrossRef] [PubMed]
  25. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, and W. G. Zijlstra, "Optical properties of human dermis in vitro and in vivo," Appl. Opt. 32, 435 (1993). [CrossRef] [PubMed]
  26. N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998). [CrossRef] [PubMed]
  27. Y. Miyamae, Y. Yamakawa, M. Kawabata, and Y. Ozaki, "A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy," Appl. Spectrosc. 62, 677-681 (2008). [CrossRef] [PubMed]
  28. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995). [CrossRef] [PubMed]
  29. M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008). [CrossRef] [PubMed]
  30. G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004). [CrossRef] [PubMed]
  31. U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited