OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Controlled detection in composite nanoresonant array for surface plasmon resonance sensing

Lin Pang, Haiping M. Chen, Lilin Wang, Joseph M. Beechem, and Yeshaiahu Fainman  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14700-14709 (2009)
http://dx.doi.org/10.1364/OE.17.014700


View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A composite nanoresonant structure is developed for sensitivity enhancement in biorecognition reactions by coupling between the localized resonance and the propagating surface plasmon polariton waves. The resonant structure was accomplished by combining holographic lithography with an oblique metallic deposition for cost-effective, large-area, and reconfigurable fabrication. The metallodielectric nanostructure was assembled with microfluidic channels and examined for biorecognition reactions, which showed pronounced improvement in the limit of detection compared to conventional nanohole array sensing configurations. The temperature influence on the binding affinity and the effectiveness of the control channel were also investigated to demonstrate the capability of the proposed composite nanoresonant surface plasmon resonance array sensor.

© 2009 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Sensors

History
Original Manuscript: June 22, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 25, 2009
Published: August 4, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Lin Pang, Haiping M. Chen, Lilin Wang, Joseph M. Beechem, and Yeshaiahu Fainman, "Controlled detection in composite nanoresonant array for surface plasmon resonance sensing," Opt. Express 17, 14700-14709 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-17-14700


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3(1), 79–88 (1982/83). [CrossRef]
  3. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. 143(2), 513–526 (1991). [CrossRef]
  4. C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996). [CrossRef] [PubMed]
  5. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef]
  6. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006). [CrossRef] [PubMed]
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999). [CrossRef]
  8. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007). [CrossRef]
  9. P. Hanarp, M. Käll, and D. S. Sutherland, “Optical Properties of Short-Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003). [CrossRef]
  10. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005). [CrossRef] [PubMed]
  11. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004). [CrossRef]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  13. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005). [CrossRef] [PubMed]
  14. A. Lesuffleur, H. Im, N. C. Lindquist, and S. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007). [CrossRef]
  15. L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90(11), 111103 (2007). [CrossRef]
  16. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag Berlin Heidelberg 2006), Chap.1.
  17. F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76(7), 1971–1975 (2004). [CrossRef] [PubMed]
  18. H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface Plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B Chem. 74(1–3), 91–99 (2001). [CrossRef]
  19. D. G. Myszka, “Improving biosensor analysis,” J. Mol. Recognit. 12(5), 279–284 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited