OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Manipulation of single DNA molecules by using optically projected images

Yen-Heng Lin, Chen-Min Chang, and Gwo-Bin Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 15318-15329 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new platform is presented that is capable of manipulating a single DNA molecule based on optically-induced dielectrophoretic forces. The ends of a single DNA molecule are bound with a micro-bead, which is then manipulated by interactions with optical images projected from a commercially available projector. Thus a single DNA molecule is indirectly manipulated by a projected animation pre-programmed using simple computer software. Real-time observation of the manipulation process is made possible by using a fluorescent dye and an oxygen scavenging buffer. Two types of DNA manipulation modes, specifically DNA elongation and rotation, are successfully demonstrated and are characterized. The maximum stretching force can be as high as 61.3 pN for a 10.1 μm bead. Experimental data show that the force-extension curve measured using this platform fits reasonably with the worm-like chain model. The developed platform can be a promising and flexible tool for further applications requiring single molecule manipulation.

© 2009 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: May 26, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: August 9, 2009
Published: August 14, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Yen-Heng Lin, Chen-Min Chang, and Gwo-Bin Lee, "Manipulation of single DNA molecules by using optically projected images," Opt. Express 17, 15318-15329 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).
  2. J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).
  3. M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).
  4. S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992). [PubMed]
  5. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000). [PubMed]
  6. J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003). [PubMed]
  7. C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).
  8. C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).
  9. A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997). [PubMed]
  10. T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).
  11. P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).
  12. L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).
  13. J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007). [PubMed]
  14. G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006). [PubMed]
  15. J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007). [PubMed]
  16. L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004). [PubMed]
  17. H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).
  18. G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).
  19. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). [PubMed]
  20. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997). [PubMed]
  21. M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).
  22. M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999). [PubMed]
  23. C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).
  24. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [PubMed]
  25. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008). [PubMed]
  26. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
  27. Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008). [PubMed]
  28. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002). [PubMed]
  29. S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996). [PubMed]
  30. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3687 KB)     
» Media 2: MPG (6264 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited