OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region

Xiao-Yong He  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15359-15371 (2009)
http://dx.doi.org/10.1364/OE.17.015359


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation properties of terahertz (THz) waves passing through heavily doped semiconductor slit have been numerically investigated by using the transfer matrix method. The effects of geometrical parameters, carrier concentration, and dielectric materials filling in the slit have been considered. The contour for carrier concentration and slit width show that as slit width and carrier concentration decreases, the effective indices increase and the propagation lengths decrease. For the case of water filling in the slit, temperature has more effect on the imaginary part of propagation constant than the real part. Most of the energy stored in the slit is in the form of electric energy, which firstly decreases and then increases with the decreasing of slit width. It is expected that the semiconductor slit structure is very useful for the practical applications of THz waves in the fields of biological specimen analysis and medical diagnosis.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(040.2235) Detectors : Far infrared or terahertz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 25, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 24, 2009
Published: August 14, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xiao-Yong He, "Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region," Opt. Express 17, 15359-15371 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-17-15359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
  2. M. Lee and M. C. Wanke, “Design of n-type silicon-based quantum cascade lasers for terahertz light emission,” Science 316, 64–65 (2007). [PubMed]
  3. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
  4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchi, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 154–157 (2002).
  5. J. C. Cao, A. Z. Li, X. L. Lei, and S. L. Feng, “Current self-oscillation and driving-frequency dependence of negative-effective-mass diodes,” Appl. Phys. Lett. 79(21), 3524–3526 (2001).
  6. J. T. Lü and J. C. Cao, “Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 89(21), 211115 (2006).
  7. H. Li, J. C. Cao, J. T. Lü, and Y. J. Han, “Monte Carlo simulation of extraction barrier width effects on terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(22), 221105 (2008).
  8. J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures,” Phys. Rev. Lett. 91(23), 237401 (2003). [PubMed]
  9. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [PubMed]
  10. J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [PubMed]
  11. X. Y. He, “Investigation of terahertz Sommerfeld propagation along conical metal wire,” J. Opt. Soc. Am. B 26(9), A23–A28 (2009).
  12. J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86(6), 061109 (2005).
  13. X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11(4), 045708 (2009).
  14. R. Mendis and M. Daniel, “Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [PubMed]
  16. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008). [PubMed]
  17. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer, Berlin, 1988).
  18. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
  19. J. Lindberg, K. Lindfors, T. Setala, M. Kaivola, and A. T. Friberg, “Spectral analysis of resonant transmission of light through a single sub-wavelength slit,” Opt. Express 12(4), 623–632 (2004). [PubMed]
  20. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [PubMed]
  21. T. H. Isaac, J. Gomez., J. R. Rivas, W. L. Sambles, Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
  22. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009). [PubMed]
  23. R. M. Gelfand, L. Bruderer, and H. Mohseni, “Nanocavity plasmonic device for ultrabroadband single molecule sensing,” Opt. Lett. 34(7), 1087–1089 (2009). [PubMed]
  24. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
  25. K. C. Vernon, D. K. Gramontnev, and D. F. P. Pile, “Channel plasmon-polariton modes in V grooves filled with dielectric,” J. Appl. Phys. 103(3), 034304 (2008).
  26. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003). [PubMed]
  27. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [PubMed]
  28. P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007). [PubMed]
  29. J. Q. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [PubMed]
  30. Y. B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17(5), 3130–3140 (2009). [PubMed]
  31. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006).
  32. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [PubMed]
  33. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31(17), 2643–2645 (2006). [PubMed]
  34. R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007).
  35. S. W. Gao, J. C. Cao, and S. L. Feng, “Waveguide design of long wavelength semiconductor laser based on surface plasmons,” Physica B 337(1-4), 230–236 (2003).
  36. J. T. Lü and J. C. Cao, “Confined optical phonon modes and electron-phonon interactions in wurtzite GaN/ZnO quantum wells,” Phys. Rev. B 71(15), 155304 (2005).
  37. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44(11), 5855–5872 (1991).
  38. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocatities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
  39. J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
  40. C. Rønne, P. O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82(14), 2888–2891 (1999).
  41. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97(5), 053106 (2005).
  42. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited