OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Tunable Bessel light modes: engineering the axial propagation

Tomáš Čižmár and Kishan Dholakia  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 15558-15570 (2009)
http://dx.doi.org/10.1364/OE.17.015558


View Full Text Article

Acrobat PDF (1529 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Due to their immunity to diffraction, Bessel light modes potentially offer advantages in various applications. However, they do exhibit significant intensity variations along their axial propagation length which hampers their applicability. In this paper we present a technique to generate Bessel beams with a tunable axial intensity within the accessible range of spatial frequencies. The beam may be engineered to have a constant intensity along its propagation length. Finally, we demonstrate how one can form a Bessel beam with a varying propagation constant along its axial extent which results in a tunable scaling of its lateral cross-section.

© 2009 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Physical Optics

History
Original Manuscript: July 7, 2009
Revised Manuscript: August 17, 2009
Manuscript Accepted: August 17, 2009
Published: August 18, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Tomáš Čižmár and Kishan Dholakia, "Tunable Bessel light modes: engineering the axial propagation," Opt. Express 17, 15558-15570 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-18-15558


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Durnin, J. J. Miceli, and J. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef]
  2. J. Durnin, "Exact solutions for nondifracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651-641 (1987). [CrossRef]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of Accelerating Airy Beams," Phys. Rev. Lett. 99, 213901 (2007). [CrossRef]
  4. J. Baumgartl, M. Mazilu, and K. Dholakia, "Optically mediated particle clearing using Airy wavepackets," Nature Photonics 2, 675-678 (2008). [CrossRef]
  5. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Lett. 29, 44-46 (2004). [CrossRef]
  6. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101:1-3 (2005).
  7. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self- reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef]
  8. V. Karásek T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K . Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008). [CrossRef]
  9. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007). [CrossRef]
  10. K.-S. Lee and J. P. Rolland, "Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range," Opt. Lett. 33, 1696-1698 (2008). [CrossRef]
  11. P. Johannisson, D. Anderson, M. Lisak, and M. Marklund, "Nonlinear Bessel beams," Opt. Commun. 222, 107-115 (2003). [CrossRef]
  12. P. Dufour, M. Piché, Y. D. Koninck, and N. McCarthy, "Two-photon excitation fluorescence microscopy with a high depth of field using an axicon," Appl. Opt. 45, 9246-9252 (2006). [CrossRef]
  13. Z. Bouchal, J. Wagner, and M. Chlup, "Self-reconstruction of a distorted nondiffracting beam," Opt. Commun. 151, 207-211 (1998). [CrossRef]
  14. O. Brzobohatý, T. Čižmár, and P. Zemánek, "High quality quasi-Bessel beam generated by round-tip axicon," Opt. Express 16, 12688-12700 (2008).
  15. T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, "Generation of multiple Bessel beams for a biophotonics workstation," Opt. Express 16, 14024-14035 (2008). [CrossRef]
  16. V. Jarutis, R. Paškauskas, and A. Stabinis, "Focusing of Laguerre-Gaussian beams by axicon," Opt. Commun. 184, 105-112 (2000). [CrossRef]
  17. M. Honkanen and J. Turunen, "Tandem systems for efficient generation of uniform-axial-intensity Bessel fields," Opt. Commun. 154, 368 - 375 (1998). [CrossRef]
  18. M. Pasienski and B. DeMarco, "A high-accuracy algorithm for designing arbitrary holographic atom traps," Opt. Express 16, 2176-2190 (2008). [CrossRef]
  19. R. Gerchberg and W. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  20. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Generalized phase contrast matched to Gaussian illumination," Opt. Express 15, 11971-11977 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited