OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics

Matthew B. Bouchard, Brenda R. Chen, Sean A. Burgess, and Elizabeth M. C. Hillman  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15670-15678 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Camera-based optical imaging of the exposed brain allows cortical hemodynamic responses to stimulation to be examined. Typical multispectral imaging systems utilize a camera and illumination at several wavelengths, allowing discrimination between changes in oxy- and deoxyhemoglobin concentration. However, most multispectral imaging systems utilize white light sources and mechanical filter wheels to multiplex illumination wavelengths, which are slow and difficult to synchronize at high frame rates. We present a new LED-based system capable of high-resolution multispectral imaging at frame rates exceeding 220 Hz. This improved performance enables simultaneous visualization of hemoglobin oxygenation dynamics within single vessels, changes in vessel diameters, blood flow dynamics from the motion of erythrocytes, and dynamically changing fluorescence.

© 2009 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 2, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 9, 2009
Published: August 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Matthew B. Bouchard, Brenda R. Chen, Sean A. Burgess, and Elizabeth M. C. Hillman, "Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics," Opt. Express 17, 15670-15678 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, and B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 89(12), 5675–5679 (1992). [CrossRef] [PubMed]
  2. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005). [CrossRef] [PubMed]
  3. D. Y. Ts’o, R. D. Frostig, E. E. Lieke, and A. Grinvald, “Functional organization of primate visual cortex revealed by high resolution optical imaging,” Science 249(4967), 417–420 (1990). [CrossRef] [PubMed]
  4. A. M. Owen, C. E. Stern, R. B. Look, I. Tracey, B. R. Rosen, and M. Petrides, “Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex,” Proc. Natl. Acad. Sci. U.S.A. 95(13), 7721–7726 (1998). [CrossRef] [PubMed]
  5. A. J. Blood, N. Pouratian, and A. W. Toga, “Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation,” J. Neurophysiol. 88(1), 422–437 (2002). [PubMed]
  6. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986). [CrossRef] [PubMed]
  7. I. Vanzetta, R. Hildesheim, and A. Grinvald, “Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry,” J. Neurosci. 25(9), 2233–2244 (2005). [CrossRef] [PubMed]
  8. N. Pouratian, A. F. Cannestra, N. A. Martin, and A. W. Toga, “Intraoperative optical intrinsic signal imaging: a clinical tool for functional brain mapping,” Neurosurg. Focus 13(4), 1–9 (2002). [CrossRef]
  9. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003). [CrossRef] [PubMed]
  10. H. D. Lu, G. Chen, D. Y. Ts’o, and A. W. Roe, “A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex,” Neuroimage 44(3), 636–646 (2009). [CrossRef]
  11. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007). [CrossRef] [PubMed]
  12. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, “Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity,” J. Cereb. Blood Flow Metab . 25, S324 (2005). [CrossRef]
  13. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007). [CrossRef] [PubMed]
  14. J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. W. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005). [CrossRef] [PubMed]
  15. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  16. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005). [CrossRef] [PubMed]
  17. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  18. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(61), 1002–1015 (2001). [CrossRef] [PubMed]
  19. H. S. Orbach, L. B. Cohen, and A. Grinvald, “Optical mapping of electrical activity in rat somatosensory and visual cortex,” J. Neurosci. 5(7), 1886–1895 (1985). [PubMed]
  20. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433(7026), 597–603 (2005). [CrossRef] [PubMed]
  21. D. Shoham, D. E. Glaser, A. Arieli, T. Kenet, C. Wijnbergen, Y. Toledo, R. Hildesheim, and A. Grinvald, “Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes,” Neuron 24(4), 791–802 (1999). [CrossRef]
  22. M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48(11), 2059–2067 (2007). [CrossRef] [PubMed]
  23. H. K. Shin, M. Nishimura, P. B. Jones, H. Ay, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia,” Stroke 39(5), 1548–1555 (2008). [CrossRef] [PubMed]
  24. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A. 102(10), 3822–3827 (2005). [CrossRef] [PubMed]
  25. D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996). [CrossRef] [PubMed]
  26. G. Themelis, J. S. Yoo, and V. Ntziachristos, “Multispectral imaging using multiple-bandpass filters,” Opt. Lett. 33(9), 1023–1025 (2008). [CrossRef] [PubMed]
  27. K. Sakaguchi, T. Tachibana, S. Furukawa, T. Katsura, K. Yamazaki, H. Kawaguchi, A. Maki, and E. Okada, “Experimental prediction of the wavelength-dependent path-length factor for optical intrinsic signal analysis,” Appl. Opt. 46(14), 2769–2777 (2007). [CrossRef] [PubMed]
  28. N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, “Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,” Neuroimage 37(Suppl 1), S27–S36 (2007). [CrossRef] [PubMed]
  29. A. Devor, E. M. C. Hillman, P. Tian, C. Waeber, I. C. Teng, L. Ruvinskaya, M. H. Shalinsky, H. Zhu, R. H. Haslinger, S. N. Narayanan, I. Ulbert, A. K. Dunn, E. H. Lo, B. R. Rosen, A. M. Dale, D. Kleinfeld, and D. A. Boas, “Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex,” J. Neurosci. 28(53), 14347–14357 (2008). [CrossRef]
  30. S. A. Prahl, Online resource: http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  31. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998). [CrossRef] [PubMed]
  32. Q. Duan, E. Angelini, S. Herz, C. Ingrassia, K. Costa, J. Holmes, S. Homma, and A. F. Laine, “Region-Based Endocardium Tracking on Real-Time Three-Dimensional Ultrasound,” Ultrasound Med. Biol. 35, 256–265 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited