OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 11 — Oct. 21, 2009

Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars

Robert W. Applegate, Jr., David W. M. Marr, Jeff Squier, and Steven W. Graves  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16731-16738 (2009)
http://dx.doi.org/10.1364/OE.17.016731


View Full Text Article

Enhanced HTML    Acrobat PDF (3582 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore a simple, inexpensive approach to large particle manipulation using diode laser bar optical trapping. This method overcomes limitations that prevent conventional point laser traps from effectively directing large particles. Expanding a previously developed line optical trap model into larger particle regimes, we verify and examine the advantages and limitations of diode laser bar trapping for manipulating particles greater than 100 µm in diameter within fluidic environments for biochemical, biological, and biomedical applications.

© 2009 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 20, 2009
Manuscript Accepted: September 1, 2009
Published: September 3, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Robert W. Applegate Jr., David W. M. Marr, Jeff Squier, and Steven W. Graves, "Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars," Opt. Express 17, 16731-16738 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-19-16731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. H. Chung, M. M. Crane, and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nat. Methods 5(7), 637–643 (2008). [CrossRef] [PubMed]
  2. J. P. Freyer, M. E. Wilder, and J. H. Jett, “Viable sorting of intact multicellular spheroids by flow cytometry,” Cytometry 8(4), 427–436 (1987). [CrossRef] [PubMed]
  3. J. P. Freyer, D. Fillak, and J. H. Jett, “Use of xantham gum to suspend large particles during flow cytometric analysis and sorting,” Cytometry 10(6), 803–806 (1989). [CrossRef] [PubMed]
  4. K. S. Lam, M. Lebl, and V. Krchnák, “The “One-Bead-One-Compound” Combinatorial Library Method,” Chem. Rev. 97(2), 411–448 (1997). [CrossRef] [PubMed]
  5. R. T. Stovel, “The influence of particles on jet breakoff,” J. Histochem. Cytochem. 25(7), 813–820 (1977). [CrossRef] [PubMed]
  6. J. H. Jett and R. G. Alexander, “Droplet sorting of large particles,” Cytometry 6(5), 484–486 (1985). [CrossRef] [PubMed]
  7. H. M. Shapiro, Practical flow cytometry (Wiley-Liss, New York, 2003).
  8. I. Union Biometrica, “COPAS Instruments for Large Particle Flow Cytometry,” (2007).
  9. J. Oakey, J. Allely, and D. W. M. Marr, “Laminar-flow-based separations at the microscale,” Biotechnol. Prog. 18(6), 1439–1442 (2002). [CrossRef] [PubMed]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  11. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004). [CrossRef] [PubMed]
  12. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]
  13. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 013904 (2008). [CrossRef]
  14. T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Phys. Rev. Lett. 80(7), 1552–1555 (1998). [CrossRef]
  15. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  17. J. Y. Walz and D. C. Prieve, “Prediction and Measurement of the Optical Trapping Forces on a Microscopic Dielectric Sphere,” Langmuir 8(12), 3073–3082 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3546 KB)     
» Media 2: MOV (4464 KB)     
» Media 3: MOV (681 KB)     
» Media 4: MOV (204 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited