OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 11 — Oct. 21, 2009

Representing the observer in electro-optical target acquisition models

Richard H. Vollmerhausen  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17253-17268 (2009)
http://dx.doi.org/10.1364/OE.17.017253


View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electro-optical target acquisition models predict the probability that a human observer recognizes or identifies a target. To accurately model targeting performance, the impact of imager blur and noise on human vision must be quantified. In the most widely used target acquisition models, human vision is treated as a “black box” that is characterized by its signal transfer response and detection thresholds. This paper describes an engineering model of observer vision. Characteristics of the observer model are compared to psychophysical data. This paper also describes how to integrate the observer model into both reflected light and thermal sensor models.

© 2009 OSA

ToC Category:
Imaging Systems

History
Original Manuscript: June 18, 2009
Revised Manuscript: August 20, 2009
Manuscript Accepted: September 9, 2009
Published: September 14, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Richard H. Vollmerhausen, "Representing the observer in electro-optical target acquisition models," Opt. Express 17, 17253-17268 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-20-17253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. S. Army, RDECOM, NVESD target acquisition models (1 June 2009), https://www.sensiac.org
  2. J. A. Ratches, R. Vollmerhausen, and R. Driggers, “Target Acquisition Performance Modeling of Infrared Imaging Systems: Past, Present, and Future,” IEEE Sens. J. 1(1), 31–40 (2001). [CrossRef]
  3. R. H. Vollmerhausen, E. Jacobs, and R. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43(11), 2806–2818 (2004). [CrossRef]
  4. R. Vollmerhausen and A. L. Robinson, “Modeling target acquisition tasks associated with security and surveillance,” Appl. Opt. 46(20), 4209–4221 (2007). [CrossRef] [PubMed]
  5. R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, “Predicting the probability of facial identification using a specific object model,” Appl. Opt. 47(6), 751–759 (2008). [CrossRef] [PubMed]
  6. R. H. Vollmerhausen, R. G. Driggers, and D. L. Wilson, “Predicting range performance of sampled imagers by treating aliased signal as target-dependent noise,” J. Opt. Soc. Am. A 25(8), 2055–2065 (2008). [CrossRef]
  7. R. H. Vollmerhausen, E. Jacobs, J. Hixson, and M. Friedman, “The Targeting Task Performance (TTP) Metric; A New Model for Predicting Target Acquisition Performance,” Technical Report AMSEL-NV-TR-230, U.S. Army CERDEC, Fort Belvoir, VA 22060, (2005).
  8. R. Driggers, R. Vollmerhausen, and K. Krapels, “Target Identification Performance as a Function of Temporal and Fixed Pattern Noise,” Opt. Eng. 40(3), 443–447 (2001). [CrossRef]
  9. N. M. Devitt, R. G. Driggers, R. H. Vollmerhausen, S. K. Moyer, K. A. Krapels, and J. D. O’Connor, “Target recognition performance as a function of sampling,” Proc. SPIE 4372, 74–84 (2001). [CrossRef]
  10. R. H. Vollmerhausen, “Predicting the effect of gain, level, and sampling on minimum resolvable temperature measurements,” Opt. Eng. (to be published).
  11. A. van Meeteren and J. M. Valeton, “Effects of pictorial noise interfering with visual detection,” J. Opt. Soc. Am. A 5(3), 438–444 (1988). [CrossRef] [PubMed]
  12. R. Vollmerhausen, “Incorporating Display Limitations into Night Vision Performance Models,” IRIS Passive Sensors 2, 11–31 (1995).
  13. H. Richard, Vollmerhausen, “Modeling the Performance of Imaging Sensors,” In Electro-Optical Imaging: System Performance and Modeling, Lucien Biberman Ed., (SPIE Press, 2000), Chapter 12.
  14. Harry L. Synder, “Image quality: measure and visual performance,” in Flat-Panel Display and CRTs, Lawrence E. Tannas, Jr., Ed., (Van Nostrand Reinhold, 1985), Chapter 4.
  15. N. S. Nagaraja, “Effect of Luminance Noise on Contrast Thresholds,” J. Opt. Soc. Am. 54(7), 950–955 (1964). [CrossRef]
  16. D. G. Pelli, “Effects of visual noise,” Doctoral dissertation at the Physiological Laboratory, Churchill College, Cambridge University, England, (1981). Available in PDF from denis.pelli@nyu.edu.
  17. G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. 4(2), 391–404 (1987). [CrossRef]
  18. D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16(3), 647 (1999). [CrossRef]
  19. M. Raghavan, “Sources of visual noise,” Ph.D. dissertation (Syracuse Univ., Syracuse, New York, 1989).
  20. P. G. J. Barten, “Formula for the contrast sensitivity of the human eye,” Proc. SPIE 5294, 231–238 (2004) (Paper available on the Web at http://www.SPIE.org). [CrossRef]
  21. R. J. Beaton, and W. W. Farley, “Comparative study of the MTFA, ICS, and SQRI image quality metrics for visual display systems,” Armstrong Lab., Air Force Systems Command, Wright-Patterson AFB, OH, Report AL-TR-1992–0001, DTIC ADA252116, (1991).
  22. J. Raymond, Stefanik, Performance modeling for image intensifier systems, Report NV-93–14, Night Vision and Electronic-Sensors Directorate, U.S. Army Research, Development, and Engineering Command, Fort Belvoir, VA, (1993).
  23. Ian Overington, Vision and Acquisition, (Crane, Russak & Company, 1976), Chapters 1,2,4.
  24. G. J. Peter, Barten, Contrast Sensitivity of the Human Eye and Its Effect on Image Quality, (SPIE Press, Bellingham, WA, 1999).
  25. R. A. Moses and W. M. Hart, “The temporal responsiveness of vision,’ in Adler’s Physiology of the Eye: Clinical Application, (Mosby 1987).
  26. H. Davson, Physiology of the Eye, 5th ed., 221 & 271, (Macmillan Academic and Professional Ltd., 1990).
  27. A. van Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12(5), 825–833 (1972). [CrossRef] [PubMed]
  28. J. J. DePalma and E. M. Lowry, “Sine wave response of the visual system. II. Sine wave and square wave contrast sensitivity,” J. Opt. Soc. Am. 52(3), 328–335 (1962). [CrossRef]
  29. A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial sine-wave responses of the human visual system,” Vision Res. 8(9), 1245–1263 (1968). [CrossRef] [PubMed]
  30. F. L. Van Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57(3), 401–406 (1967). [CrossRef]
  31. A. S. Patel, “Spatial resolution by the human visual system. The effect of mean retinal illuminance,” J. Opt. Soc. Am. 56(5), 689–694 (1966). [CrossRef] [PubMed]
  32. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197(3), 551–566 (1968). [PubMed]
  33. Kenneth R. Boss and Janet E. Lincoln, Engineering Data Compendium: Human Perception and Performance, Vol. 1, Harry G. Armstrong Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, (1988).
  34. V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37(3), 475–494 (1979). [CrossRef] [PubMed]
  35. C. R. Carlson, “Sine-wave threshold contrast-sensitivity function: dependence on display size,” RCA Review 43, 675–683 (1982).
  36. J. Rovamo, H. Kukkonen, and J. Mustonen, “Foveal optical modulation transfer function of the human eye at various pupil sizes,” J. Opt. Soc. Am. 15(9), 2504 (1998). [CrossRef]
  37. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186(3), 558–578 (1966). [PubMed]
  38. A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974). [CrossRef]
  39. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytic expression,” J. Opt. Soc. Am. 11(1), 246–249 (1994). [CrossRef]
  40. C. F. Stromeyer and B. Julesz, “Spatial-frequency masking in vision: critical bands and spread of masking,” J. Opt. Soc. Am. 62(10), 1221–1232 (1972). [CrossRef] [PubMed]
  41. Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. 18(9), 2041–2053 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited