OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Wavelength swept amplified spontaneous emission source

Christoph M. Eigenwillig, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18794-18807 (2009)
http://dx.doi.org/10.1364/OE.17.018794


View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new, alternative approach to realize a wavelength swept light source with no fundamental limit to sweep speed. Amplified spontaneous emission (ASE) light alternately passes a cascade of optical gain elements and tunable optical bandpass filters. We show that for high sweep speeds, the control signal for the different filters has to be applied with a defined, precise phase delay on the order of nanoseconds, to compensate for the light propagation time between the filters and ensure optimum operation. At a center wavelength of 1300 nm sweep rates of 10 kHz, 100 kHz and 340 kHz over a sweep range of 100 nm full width and an average power of 50 mW are demonstrated. For application in optical coherence tomography (OCT), an axial resolution of 12 µm (air), a sensitivity of 120 dB (50 mW) and a dynamic range of 50 dB are achieved and OCT imaging is demonstrated. Performance parameters like coherence properties and relative intensity noise (RIN) are quantified, discussed and compared to the performance of Fourier Domain Mode Locked (FDML) lasers. Physical models for the observed difference in performance are provided.

© 2009 OSA

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(110.4500) Imaging systems : Optical coherence tomography
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 29, 2009
Revised Manuscript: August 28, 2009
Manuscript Accepted: September 1, 2009
Published: October 2, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Christoph M. Eigenwillig, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber, "Wavelength swept amplified spontaneous emission source," Opt. Express 17, 18794-18807 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-21-18794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “OPTICAL COHERENCE TOMOGRAPHY,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/sci;254/5035/1178 . [CrossRef] [PubMed]
  2. G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998), http://dx.doi.org/10.1117/1.429899 . [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “MEASUREMENT OF INTRAOCULAR DISTANCES BY BACKSCATTERING SPECTRAL INTERFEROMETRY,” Opt. Commun. 117(1-2), 43–48 (1995), http://dx.doi.org/10.1016/0030-4018(95)00119-S . [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 . [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 . [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 . [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 . [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-13-2977 . [CrossRef] [PubMed]
  9. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11575 . [CrossRef] [PubMed]
  10. W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88(10), 103902 (2006), http://link.aip.org/link/?APPLAB/88/103902/1 . [CrossRef]
  11. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 . [CrossRef] [PubMed]
  12. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 . [CrossRef] [PubMed]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3225 . [CrossRef] [PubMed]
  14. T. J. Eom, V. A. Tougbaev, B. A. Yu, W. Shin, Y. L. Lee, and D. K. Ko, “Narrowband wavelength selective detector applicable SD-OCT based on Fabry-Perot tunable filter and balanced photoreceiver,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII, (SPIE, 2008), 68470R–68471. http://spie.org/x648.html?product_id=766436
  15. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16(18), 14095–14105 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14095 . [CrossRef] [PubMed]
  16. Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282(1), 88–92 (2009), http://dx.doi.org/10.1016/j.optcom.2008.09.059 . [CrossRef]
  17. M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16(6), 3727–3737 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3727 . [CrossRef] [PubMed]
  18. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16(4), 2547–2554 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2547 . [CrossRef] [PubMed]
  19. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16552 . [PubMed]
  20. Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19(3), 450–454 (2009), http://www.springerlink.com/content/p300147134334266/ . [CrossRef]
  21. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33(13), 1395–1397 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-13-1395 . [CrossRef] [PubMed]
  22. M. J. R. Heck, A. Renault, E. Bente, Y. S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Notzel, “Passively Mode-Locked 4.6 and 10.5 GHz Quantum Dot Laser Diodes Around 1.55 mu m With Large Operating Regime,” IEEE J. Sel. Top. Quantum Electron. 15, 634–643 (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=5068462&arnumber=4982709&count=68&index=19 . [CrossRef]
  23. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-6-626 . [CrossRef] [PubMed]
  24. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007), http://www.nature.com/nphoton/journal/v1/n12/abs/nphoton.2007.228.html . [CrossRef]
  25. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4376 . [CrossRef] [PubMed]
  26. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, S. Barry, A. E. Cable, R. Huber, and J. G. Fujimoto, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15(24), 15972–15986 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15972 . [CrossRef] [PubMed]
  27. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008), http://www.nature.com/labinvest/journal/v88/n4/full/labinvest20084a.html . [CrossRef] [PubMed]
  28. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4163 . [CrossRef] [PubMed]
  29. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-21-2556 . [CrossRef] [PubMed]
  30. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9947 . [CrossRef] [PubMed]
  31. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 . [CrossRef] [PubMed]
  32. C. M. Eigenwillig, W. Wieser, B. R. Biedermann, and R. Huber, “Subharmonic Fourier domain mode locking,” Opt. Lett. 34(6), 725–727 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-725 . [CrossRef] [PubMed]
  33. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6210 . [CrossRef] [PubMed]
  34. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 . [CrossRef] [PubMed]
  35. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6251 . [CrossRef] [PubMed]
  36. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett. 33(23), 2815–2817 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-23-2815 . [CrossRef] [PubMed]
  37. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier Domain Mode Locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2(6-7), 357–363 (2009), http://www3.interscience.wiley.com/journal/122473349/abstract . [CrossRef]
  38. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-4-361 . [CrossRef] [PubMed]
  39. J. A. Filipa, J. W. Walewski, and S. T. Sanders, “Optical beating of polychromatic light and its impact on time-resolved spectroscopy. Part II: Strategies for spectroscopic sensing in the presence of optical beating,” Appl. Spectrosc. 62(2), 230–237 (2008), http://www.opticsinfobase.org/as/abstract.cfm?URI=as-62-2-230 . [CrossRef] [PubMed]
  40. J. W. Walewski, J. A. Filipa, and S. T. Sanders, “Optical beating of polychromatic light and its impact on time-resolved spectroscopy. Part I: Theory,” Appl. Spectrosc. 62(2), 220–229 (2008), http://www.opticsinfobase.org/as/abstract.cfm?URI=as-62-2-220 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited