OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Closed-loop control of magnetic fluid deformable mirrors

Azhar Iqbal, Zhizheng Wu, and Foued Ben Amara  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 18957-18970 (2009)
http://dx.doi.org/10.1364/OE.17.018957


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents the first-ever experimental evaluation of a closed-loop adaptive optics system based on a magnetic fluid deformable mirror (MFDM). MFDMs are a new type of wavefront correctors used in adaptive optics systems to compensate for complex optical aberrations. They have been found particularly suitable for ophthalmic imaging systems where they can be used to compensate for the aberrations in the eye that lead to blurry retinal images. However, their practical implementation in clinical devices requires effective methods to control the shape of their deformable surface. This paper presents one such control method which is based on an innovative technique used to linearize the response of the MFDM surface shape. The design of the controller is based on a DC-decoupled model of the multi-input multi-output system and on considering a decentralized PI controller. Experimental results showing the performance of the closed-loop system comprising the developed controller and a 19-channel prototype MFDM are presented.

© 2009 OSA

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: August 6, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: September 28, 2009
Published: September 6, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Azhar Iqbal, Zhizheng Wu, and Foued Ben Amara, "Closed-loop control of magnetic fluid deformable mirrors," Opt. Express 17, 18957-18970 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-21-18957


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Tyson, Introduction to Adaptive Optics (SPIE Press, Bellingham WA, 2000).
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press Inc., New York, 1998).
  3. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC-Press, 1996).
  4. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  5. J. Porter, H. Queener, L. Julianna, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (John Wiley & Sons Inc., New York, 2006).
  6. A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002). [CrossRef]
  7. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47(33), 6300–6306 (2008). [CrossRef] [PubMed]
  8. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refract. Surg. 33(10), 1721–1726 (2007). [CrossRef] [PubMed]
  9. I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007). [CrossRef]
  10. J. A. Perreault, T. G. Bifano, B. M. Levine, and M. N. Horenstein, “Adaptive optic correction using microelectromechanical deformable mirrors,” Opt. Eng. 41(3), 561–566 (2002). [CrossRef]
  11. D. C. Dayton, J. D. Mansell, J. D. Gonglewski, and S. R. Restino, “Novel micromachined membrane mirror characterization and closed-loop demonstration,” Opt. Commun. 200(1-6), 99–105 (2001). [CrossRef]
  12. P. Kurczynski, G. Bogart, W. Lai, V. Lifton, W. Mansfield, J. Tyson, B. Sadoulet, and D. R. Williams, “Electrostatically actuated membrane mirrors for adaptive optics,” Proc. SPIE 4983, 250–258 (2003). [CrossRef]
  13. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002). [CrossRef]
  14. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13(11), 4275–4285 (2005). [CrossRef] [PubMed]
  15. P. Laird, R. Bergamasco, V. Berube, E. F. Borra, A. R. Ritcey, M. Rioux, N. Robitaille, S. Thibault, L. V. da Silva, and H. Yockell-Lelivre, “Ferrofluid-based deformable mirrors: a new approach to adaptive optics using liquid mirrors,” Proc. SPIE 4839, 733–740 (2003). [CrossRef]
  16. P. Laird, N. Caron, M. Rioux, E. F. Borra, and A. R. Ritcey, “Ferrofluidic adaptive mirrors,” Appl. Opt. 45(15), 3495–3500 (2006). [CrossRef] [PubMed]
  17. D. Brousseau, E. F. Borra, and S. Thibault, “Wavefront correction with a 37-actuator ferrofluid deformable mirror,” Opt. Express 15(26), 18190–18199 (2007). [CrossRef] [PubMed]
  18. P. Laird, “Theory and Application of Magnetically Shaped Liquid Optical Surfaces,” PhD Dissertation, (Laval University, Quebec, 2005).
  19. S. Thibault, D. Brousseau, M. Rioux, S. Senkow, J. P. Dery, E. F. Borra, and A. R. Ritcey, “Nanoengineered ferrofluid deformable mirror: A progress report,” Proc. SPIE 6272, 627231 (2006).
  20. A. Iqbal and F. Ben Amara, “Modeling and experimental evaluation of a circular magnetic-fluid deformable mirror,” Int. J. Optomechatronics 2(2), 126–143 (2008). [CrossRef]
  21. A. Liotard, S. Muraret, F. Zamkotsian, and J. Y. Fourniols, “Static and dynamic microdeformable mirror characterization by phase-shifting and time-averaged interferometry,” Proc. SPIE 5716, 207–217 (2005). [CrossRef]
  22. D. A. Horsleya, H. Parka, S. P. Lautb, and J. S. Wernerb, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sensor. Actuat, A-Phys. 134, 221–230 (2007). [CrossRef]
  23. L. Baudouin, C. Prieur, F. Guignard, and D. Arzelier, “Robust control of a bimorph mirror for adaptive optics systems,” Appl. Opt. 47(20), 3637–3645 (2008). [CrossRef] [PubMed]
  24. D. P. Looze, “Minimum variance control structure for adaptive optics systems,” J. Opt. Soc. Am. A 23(3), 603–612 (2006). [CrossRef]
  25. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).
  26. C. L. Phillips, Feedback Control Systems (Prentice-Hall Inc, New Jersey, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited