OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

A simple and robust method to extend the dynamic range of an aberrometer

C. Leroux and C. Dainty  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 19055-19061 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an algorithm to extend significantly the dynamic range of a Shack-Hartmann wavefront sensor. With this method, the recorded Shack-Hartmann spots are not constrained to stay in the field of view of their lenslet. The proposed algorithm is computationally effective, robust to a high level of noise on the measured centroid positions and also to missing centroid values. The principle is closely related to the description of wavefronts using Zernike polynomials, which makes optimization for a given sensor and application achievable thanks to numerical simulation. These features make it useful for the measurements of highly aberrated eyes.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 17, 2009
Revised Manuscript: October 2, 2009
Manuscript Accepted: October 3, 2009
Published: October 7, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

C. Leroux and C. Dainty, "A simple and robust method to extend the dynamic range of an aberrometer," Opt. Express 17, 19055-19061 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Primot, "Theoretical description of Shack-Hartmann wave-front sensor," Opt. Commun. 222,81-92 (2003). [CrossRef]
  2. A. Burvall, E. Daly, S. R. Chamot, and C. Dainty, "Linearity of the pyramid wavefront sensor," Opt. Express 14,11925-11934 (2006). [CrossRef] [PubMed]
  3. D. Malacara, Optical Shop Testing (Wiley-Interscience,2007). [CrossRef]
  4. R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24,951-953 (1999). [CrossRef]
  5. N. Lindlein, J. Pfund, and J. Schwider, "Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator array," Opt. Eng. 40,837-840 (2001). [CrossRef]
  6. G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11,030502-030504 (2006). [CrossRef]
  7. L. E. Schmutz and B. M. Levine, "Hartmann sensors detect optical fabrication errors," Laser Focus World 32, (1996).
  8. X. Levecq and S. Bucourt, "Method and device for analysing a highly dynamic wavefront," US patent 6,750,957B1 (2004)
  9. N. Lindlein, J. Pfund, and J. Schwider, "Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses," Opt. Eng. 39,2220-2225 (2000). [CrossRef]
  10. N. Lindlein and J. Pfund, "Experimental results for expanding the dynamic range of a Shack-Hartmann sensor using astigmatic microlenses," Opt. Eng. 41,529-533 (2002). [CrossRef]
  11. J. Pfund, N. Lindlein, and J. Schwider, "Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm," Opt. Lett. 23,995-997 (1998). [CrossRef]
  12. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, "Wave-Front Reconstruction with a Shack-Hartmann Sensor with an Iterative Spline Fitting Method," Appl. Opt. 39,561-567 (2000). [CrossRef]
  13. D. G. Smith and J. E. Greivenkamp Schwider, "Generalized method for sorting Shack-Hartmann spot patterns using local similarity," Appl. Opt. 47,4548-4554 (2008). [CrossRef] [PubMed]
  14. L. Lundstrm and P. Unsbo, "Unwrapping Hartmann-Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method," Optom. Vis. Sci. 81,383-388 (2004). [CrossRef]
  15. N. Lindlein and J. Pfund, "Phase retrieval by demodulation of a Hartmann-Shack sensor," Opt. Commun. 215,285-288 (2003). [CrossRef]
  16. M. C. Roggemann and T. J. Schulz, "Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements," Appl. Opt. 37,4321-4329(1998). [CrossRef]
  17. R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998).
  18. L. Diaz-Santana, G. Walker, and S. Bará, "Sampling geometries for ocular aberrometry: A model for evaluation of performance," J. Opt. Soc. Am. A 13,8801-8818 (2005).
  19. S. Bará, "Characteristic functions of Hartmann-Shack wavefront sensors and laser-ray-tracing aberrometers," J. Opt. Soc. Am. A 24,3700-3707 (2007). [CrossRef]
  20. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting optical aberrations of eyes," J. Ref. Surg. 18,652-660 (2000).
  21. N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, and K. Nishida, "Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus," Ophthalmology 109,1996-2003 (2002). [CrossRef] [PubMed]
  22. S. Pantanelli, S. MacRae, T.M. Jeong, G. Yoon, "Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor," Ophthalmology 114,2013-2021 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited