OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Optical-fiber-microsphere for remote fluorescence correlation spectroscopy

Heykel Aouani, Frédérique Deiss, Jérôme Wenger, Patrick Ferrand, Neso Sojic, and Hervé Rigneault  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 19085-19092 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence correlation spectroscopy (FCS) is a versatile method that would greatly benefit to remote optical-fiber fluorescence sensors. However, the current state-of-the-art struggles with high background and low detection sensitivities that prevent the extension of fiber-based FCS down to the single-molecule level. Here we report the use of an optical fiber combined with a latex microsphere to perform FCS analysis. The sensitivity of the technique is demonstrated at the single molecule level thanks to a photonic nanojet effect. This offers new opportunities for reducing the bulky microscope setup and extending FCS to remote or in vivo applications.

© 2009 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 27, 2009
Manuscript Accepted: October 5, 2009
Published: October 8, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Heykel Aouani, Frédérique Deiss, Jérôme Wenger, Patrick Ferrand, Neso Sojic, and Hervé Rigneault, "Optical-fiber-microsphere for remote fluorescence correlation spectroscopy," Opt. Express 17, 19085-19092 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maiti, U. Haupts, andW.W.Webb, "Fluorescence correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11753-11757 (1997). [CrossRef] [PubMed]
  2. W. W. Webb, "Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus," Appl. Opt. 40, 3969-3983 (2001). [CrossRef]
  3. J. Wenger, D. Gerard, H. Aouani, H. Rigneault, B. Lowder, S. Blair, E. Devaux, T. W. Ebbesen, "Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy," Anal. Chem. 81, 834-839 (2009). [CrossRef]
  4. F. Helmchen, "Miniaturization of fluorescence microscopes using fibre optics," Exp. Physiol. 87, 737-745 (2002). [CrossRef] [PubMed]
  5. J. R. Epstein and D. R. Walt, "Fluorescence-based fibre optic arrays: a universal platform for sensing," Chem. Soc. Rev. 32, 203-214 (2003). [CrossRef] [PubMed]
  6. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Anal. Chem. 78, 3859-3873 (2006). [CrossRef] [PubMed]
  7. K. Garai, M. Muralidhar, and S. Maiti, "Fiber-optic fluorescence correlation spectrometer," Appl. Opt. 45, 7538-7542 (2006). [CrossRef] [PubMed]
  8. K. Garai, R. Sureka, and S. Maiti, "Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy," Biophys. J. 92, L55-L57 (2007). [CrossRef] [PubMed]
  9. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, "Two-photon fluorescence correlation spectroscopy through dual-clad optical fiber," Opt. Express 16, 12640-12649 (2008). [PubMed]
  10. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  11. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13,526-533 (2005). [CrossRef] [PubMed]
  12. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008). [CrossRef] [PubMed]
  13. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  14. D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault, "Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence," Opt. Express 16, 15297-15303 (2008). [CrossRef] [PubMed]
  15. D. Gerard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, "Efficient excitation and collection of single molecule fluorescence close to a dielectric microsphere," J. Opt. Soc. Am. B 26, 1473-1478 (2009). [CrossRef]
  16. A. Devilez, N. Bonod, B. Stout, D. G’erard, J.Wenger, H. Rigneault, and E. Popov, "Three-dimensional subwavelength confinement of photonic nanojets," Opt. Express 17, 2089-2094 (2009). [CrossRef] [PubMed]
  17. J. Wenger, D. Gerard, H. Aouani, and H. Rigneault, "Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres," Anal. Chem. 80, 6800-6804 (2008). [CrossRef] [PubMed]
  18. A. Gennerich and D. Schild, "Fluorescence Correlation Spectroscopy in Small Cytosolic Compartments Depends Critically on the Diffusion Model used," Biophys. J. 79, 3294-3306 (2000). [CrossRef] [PubMed]
  19. J. Wenger, D. Gerard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub and T.W. Ebbesen,"Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures," Opt. Express 16, 3008-3020 (2008). [CrossRef] [PubMed]
  20. M. Pitschke, R. Prior, M. Haupt, and D. Riesner, "Detection of single amyloid b -protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy," Nature Medicine 4, 832-834 (1998). [CrossRef] [PubMed]
  21. N. Opitz, P. J. Rothwell, B. Oeke, and P. Schwille, "Single molecule FCS-based oxygen sensor (O2-FCSensor): a new intrinsically calibrated oxygen sensor utilizing fluorescence correlation spectroscopy (FCS) with single fluorescent molecule detection sensitivity," Sens. Actuators B 96, 460-467 (2003). [CrossRef]
  22. F. H. C. Wong, D. S. Banks, A. Abu-Arish, and C. Fradin, "A Molecular Thermometer Based on Fluorescent Protein Blinking," J. Am. Chem. Soc. 129, 10302-10303 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited