OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Optical mirror trap with a large field of view

Maximilian Pitzek, Ruth Steiger, Gregor Thalhammer, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19414-19423 (2009)
http://dx.doi.org/10.1364/OE.17.019414


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach combines a large field of view and a large working distance with the possibility to manipulate particles in a large size range, since it allows to use a microscope objective with a numerical aperture as low as 0.2. In this work we demonstrate robust optical three-dimensional trapping in a range of 1 mm×1 mm×2 mm with particle sizes ranging from 1.4 µm up to 45 µm. The use of spatial light modulator based holographic methods to create the trapping beams allows to simultaneously trap many beads in complex, dynamic configurations. We present measurements that characterize the mirror traps in terms of trap stiffness, maximum trapping force and capture range.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 28, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 7, 2009
Published: October 12, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Maximilian Pitzek, Ruth Steiger, Gregor Thalhammer, Stefan Bernet, and Monika Ritsch-Marte, "Optical mirror trap with a large field of view," Opt. Express 17, 19414-19423 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-22-19414


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11(5), 288 (1986). [CrossRef]
  2. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24(4), 156 (1970). [CrossRef]
  3. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  4. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The optical stretcher: a novel laser tool to micromanipulate cells," Biophys. J. 81(2), 767-784 (2001). [CrossRef]
  5. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20(7), 1568-1574 (2003). [CrossRef]
  6. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Express 14(12), 5779-5791 (2006). [CrossRef]
  7. D. G. Grier, "A revolution in optical manipulation," Nature 424(6950), 810-816 (2003). [CrossRef]
  8. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27(4), 267-269 (2002). [CrossRef]
  9. J. S. Dam, P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems," Opt. Express 15(13), 7968-7973 (2007). [CrossRef]
  10. S. Zwick, L. He, M. Warber, T. Haist, and W. Osten, "Holografisch generierte Doppelfallen f¨ur dreidimensionales Trapping," in DGaO-Proceedings (2007).
  11. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, "Holographic twin traps," J. Opt. A 11(3), 034,011 (2009).
  12. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, "Full phase and amplitude control of holographic optical tweezers with high efficiency," Opt. Express 16(7), 4479-4486 (2008). [CrossRef]
  13. A. Jesacher, A. Schwaighofer, S. F¨urhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express 15(9), 5801-5808 (2007). [CrossRef]
  14. J. A. Davis and D. M. Cottrell, "Random mask encoding of multiplexed phase-only and binary phase-only filters," Opt. Lett. 19(7), 496-498 (1994). [CrossRef]
  15. R. D. Leonardo, F. Ianni, and G. Ruocco, "Computer generation of optimal holograms for optical trap arrays," Opt. Express 15(4), 1913-1922 (2007). [CrossRef]
  16. W. Singer, S. Bernet, and M. Ritsch-Marte, "3D-Force Calibration of Optical Tweezers for Mechanical Stimulation of Surfactant-Releasing Lung Cells," Laser Phys. 11(11), 1217-1223 (2001).
  17. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, "Three-dimensional forces in GPC-based counterpropagating-beam traps," Opt. Express 14(12), 5812-5822 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1895 KB)     
» Media 2: AVI (1395 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited