OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Time-gated perturbation Monte Carlo
for whole body functional imaging
in small animals

Jin Chen and Xavier Intes  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19566-19579 (2009)
http://dx.doi.org/10.1364/OE.17.019566


View Full Text Article

Acrobat PDF (307 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper explores a time-resolved functional imaging method based on Monte Carlo model for whole-body functional imaging of small animals. To improve the spatial resolution and quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed approach are employed on an anatomically accurate mouse model where the optical properties range and volume limitations of the diffusion equation model exist. We investigate the performances of using time-gated data type and spatial priors to quantitatively image the functional parameters of multiple organs. Accurate reconstructions of the two main functional parameters of the blood volume and the relative oxygenation are demonstrated by using our method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to imaging small organs such as the heart.

© 2009 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 28, 2009
Revised Manuscript: October 2, 2009
Manuscript Accepted: October 6, 2009
Published: October 14, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Jin Chen and Xavier Intes, "Time-gated perturbation Monte Carlo
for whole body functional imaging
in small animals," Opt. Express 17, 19566-19579 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-22-19566


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002). [CrossRef]
  2. V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
  3. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005). [CrossRef]
  4. F. Azar, and X. Intes, Translational Multimodality Optical Imaging, chap. Introduction to Clinical Optical Imaging, p. 1 (Artech House, Norwood, 2008).
  5. S. Bjoern, S. V. Patwardhan, and J. P. Culver, “The influence of heterogeneous optical properties on fluorescence diffusion tomography of small animals,” in 2006 OSA/BOSD, AOIMP, TLA (2006).
  6. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007). [CrossRef]
  7. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008). [CrossRef]
  8. X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005). [CrossRef]
  9. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001). [CrossRef]
  10. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998). [CrossRef]
  11. X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005). [CrossRef]
  12. U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006). [CrossRef]
  13. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998). [CrossRef]
  14. A. Pineda, M. Schweiger, S. Arridge, and H. Barrett, “Information content of data types in time-domain optical tomography,” J. Opt. Soc. Am. A 23(12), 2989–2996 (2006). [CrossRef]
  15. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10447 (2008). [CrossRef]
  16. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005). [CrossRef]
  17. S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express 13(7), 2263–2275 (2005). [CrossRef]
  18. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008). [CrossRef]
  19. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990). [CrossRef]
  20. J. C. Rasmussen, T. Pan, A. Joshi, T. Wareing, J. McGhee, and E. M. Sevick-Muraca, “Comparison of radiative transport, Monte Carlo, and Diffusion forward models for small animal optical tomography,” in 2007 IEEE ISBI, pp. 824–827 (2007).
  21. Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004). [CrossRef]
  22. J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
  23. Translational Multimodality Optical Imaging, F. Azar and X. Intes (eds.), Artech House, Norwood, 2008.
  24. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004). [CrossRef]
  25. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” in SPIE Institute Series IS 5, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), pp. 102–111.
  26. L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995). [CrossRef]
  27. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
  28. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001). [CrossRef]
  29. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005). [CrossRef]
  30. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005). [CrossRef]
  31. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007). [CrossRef]
  32. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002). [CrossRef]
  33. V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
  34. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). [CrossRef]
  35. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef]
  36. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001). [CrossRef]
  37. J. Chen, and X. Intes, “Time-resolved perturbation Monte Carlo for 3D optical imaging in small animals,” 34th Annual Northeast Bioengineering Conference, April 4th 2008.
  38. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited