OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

Probing the dynamic differential stiffness of dsDNA interacting with RecA in the enthalpic regime

Chia-Hui Lien, Ming-Tzo Wei, Te- Yu Tseng, Chien-Der Lee, Chung Wang, Ting-Fang Wang, H. Daniel Ou-Yang, and Arthur Chiou  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20376-20385 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



RecA plays a central role in homologous recombination of DNA. When RecA combines with dsDNA to form RecA-dsDNA nucleofilament, it unwinds dsDNA and changes its structure. The unwinding length extension of a DNA segment interacting with RecA has been studied by various techniques, but the dynamic differential stiffness of dsDNA conjugating with RecA has not been well characterized. We applied oscillatory optical tweezers to measure the differential stiffness of dsDNA molecules, interacting with RecA, as a function of time at a constant stretching force of 33.6pN. The values of the differential stiffness of DNA (for stretching force in the range of 20.0pN to 33.6pN) measured by oscillatory optical tweezers, both before and after its interaction with RecA, are consistent with those measured by stationary optical tweezers. In the dynamic measurement, we have shown that the association (or binding) rate increases with higher concentration of RecA; besides, we have also monitored in real-time the dissociation of RecA from the stretched RecA-dsDNA filament as ATPγS was washed off from the sample chamber. Finally, we verified that RecA (I26C), a form of RecA mutant, does not affect the differential stiffness of the stretched DNA sample. It implies that mutant RecA (I26C) does not bind to the DNA, which is consistent with the result obtained by conventional biochemical approach.

© 2009 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: August 11, 2009
Revised Manuscript: October 14, 2009
Manuscript Accepted: October 15, 2009
Published: October 23, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Chia-Hui Lien, Ming-Tzo Wei, Te- Yu Tseng, Chien-Der Lee, Chung Wang, Ting-Fang Wang, H. Daniel Ou-Yang, and Arthur Chiou, "Probing the dynamic differential stiffness of dsDNA interacting with RecA in the enthalpic regime," Opt. Express 17, 20376-20385 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). [CrossRef] [PubMed]
  2. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003). [CrossRef] [PubMed]
  3. T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004). [CrossRef]
  4. S. Cui, C. Albrecht, F. Kühner, and H. E. Gaub, “Weakly bound water molecules shorten single-stranded DNA,” J. Am. Chem. Soc. 128(20), 6636–6639 (2006). [CrossRef] [PubMed]
  5. A. Sischka, R. Eckel, K. Toensing, R. Ros, and D. Anselmetti, “Compact microscope-based optical tweezers system for molecular manipulation,” Rev. Sci. Instrum. 74(11), 4827–4831 (2003). [CrossRef]
  6. T. T. Perkins, H.-W. Li, R. V. Dalal, J. Gelles, and S. M. Block, “Forward and reverse motion of single RecBCD molecules on DNA,” Biophys. J. 86(3), 1640–1648 (2004). [CrossRef] [PubMed]
  7. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005). [CrossRef] [PubMed]
  8. F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, “Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers,” Phys. Rev. Lett. 96(11), 118301 (2006). [CrossRef] [PubMed]
  9. A. Sischka, K. Toensing, R. Eckel, S. D. Wilking, N. Sewald, R. Ros, and D. Anselmetti, “Molecular mechanisms and kinetics between DNA and DNA binding ligands,” Biophys. J. 88(1), 404–411 (2005). [CrossRef]
  10. B. D. Coleman, W. K. Olson, and D. Swigon, “Theory of sequence-dependent DNA elasticity,” J. Chem. Phys. 118(15), 7127–7140 (2003). [CrossRef]
  11. S. C. West, “Enzymes and molecular mechanisms of genetic recombination,” Annu. Rev. Biochem. 61(1), 603–640 (1992). [CrossRef] [PubMed]
  12. E. H. Egelman and A. Stasiak, “Electron microscopy of RecA-DNA complexes: two different states, their functional significance and relation to the solved crystal structure,” Micron 24(3), 309–324 (1993). [CrossRef]
  13. S. C. Kowalezykowski, “Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange,” Annu. Rev. Biophys. Biophys. Chem. 20(1), 539–575 (1991). [CrossRef]
  14. R. Galletto, I. Amitani, R. J. Baskin, and S. C. Kowalczykowski, “Direct observation of individual RecA filaments assembling on single DNA molecules,” Nature 443(7113), 875–878 (2006). [CrossRef] [PubMed]
  15. M. Hegner, S. B. Smith, and C. Bustamante, “Polymerization and mechanical properties of single RecA-DNA filaments,” Proc. Natl. Acad. Sci. U.S.A. 96(18), 10109–10114 (1999). [CrossRef] [PubMed]
  16. C.-D. Lee, H.-C. Sun, S.-M. Hu, C.-F. Chiu, A. Homhuan, S.-M. Liang, C.-H. Leng, and T.-F. Wang, “An improved SUMO fusion protein system for effective production of native proteins,” Protein Sci. 17(7), 1241–1248 (2008). [CrossRef] [PubMed]
  17. M. T. Valentine, L. E. Dewalt, and H. D. Ou-Yang, “Forces on a colloidal particle in polymer solution: a study using optical tweezers,” J. Phys.: Condensed Matter (UK) 8(47), 9477–9482 (1996). [CrossRef]
  18. M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13(15), 5798–5806 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5798 . [CrossRef] [PubMed]
  19. L. A. Hough and H. D. Ou-Yang, “Viscoelasticity of aqueous telechelic poly (ethylene oxide) solutions: relaxation and structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 031802 (2006). [CrossRef] [PubMed]
  20. E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23(7), 3654–3665 (2007). [CrossRef] [PubMed]
  21. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  22. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995). [CrossRef]
  23. M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited