OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

χ2 analysis for estimating the accuracy of optical properties derived from time resolved diffuse-reflectance

Laurent Guyon, Anabela da Silva, Anne Planat-Chrétien, Philippe Rizo, and Jean-Marc Dinten  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20521-20537 (2009)
http://dx.doi.org/10.1364/OE.17.020521


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Weighted residuals and the reduced χ2R2) value are investigated with regard to their relevance for assessing optical property estimates using the diffusion equation for time-resolved measurements in turbid media. It is shown and explained, for all photon counting experiments including lifetime estimation, why χR2 increases linearly with the number of photons when there is a model bias. Only when a sufficient number of photons has been acquired, χR2 is a pertinent value for assessing the accuracy of μa and μs' estimates. It was concluded that χR2 is of particular interest for cases of small interfiber separation, low-level scattering, strong absorption and incorrect measurement of instrument response function. It was also found that χR2 is less pertinent for judging μa in case of air boundary effects.

© 2009 OSA

OCIS Codes
(290.7050) Scattering : Turbid media
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Scattering

History
Original Manuscript: June 12, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 7, 2009
Published: October 23, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Laurent Guyon, Anabela da Silva, Anne Planat-Chrétien, Philippe Rizo, and Jean-Marc Dinten, "χ2 analysis for estimating the accuracy of optical properties derived from time resolved diffuse-reflectance," Opt. Express 17, 20521-20537 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-22-20521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. V. V. Tuchin, Handbook of optical biomedical diagnostics. (2002).
  3. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004). [CrossRef] [PubMed]
  4. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008). [CrossRef] [PubMed]
  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  6. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005). [CrossRef] [PubMed]
  7. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  8. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008). [CrossRef] [PubMed]
  9. X. F. Cheng and D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4(8), 299–307 (1999). [CrossRef] [PubMed]
  10. V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999). [CrossRef]
  11. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003). [CrossRef] [PubMed]
  12. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988). [CrossRef] [PubMed]
  13. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  14. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36(12), 1155–1161 (1989). [CrossRef] [PubMed]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  16. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988). [CrossRef] [PubMed]
  17. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005). [CrossRef] [PubMed]
  18. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000). [PubMed]
  19. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007). [CrossRef] [PubMed]
  20. K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990). [CrossRef] [PubMed]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996). [CrossRef] [PubMed]
  22. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994). [CrossRef]
  23. A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006). [CrossRef] [PubMed]
  24. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008). [CrossRef] [PubMed]
  25. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008). [CrossRef] [PubMed]
  26. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007). [CrossRef] [PubMed]
  27. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983). [CrossRef] [PubMed]
  28. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  29. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989). [CrossRef] [PubMed]
  30. T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008). [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (2006).
  32. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water,” Ocean Optics XII Proc. SPIE 2258, 174–183 (1994).
  33. S. Prahl, “Monte Carlo Simulations,” http://omlc.ogi.edu/software/mc/ .
  34. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Dosimetry of Laser Radiation in Medicine and Biology - Proc. SPIE IS 5, 102–111 (1989).
  35. J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1135–1141 (1997). [CrossRef]
  36. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22(12), 853–855 (1997). [CrossRef] [PubMed]
  37. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003). [CrossRef] [PubMed]
  38. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005). [CrossRef] [PubMed]
  39. L. Leonardi and D. H. Burns, “Quantitative measurements in scattering media: Photon time-of-flight analysis with analytical descriptors,” Appl. Spectrosc. 53(6), 628–636 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited