OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Coupling of light from microdisk lasers into plasmonic nano-antennas

Haroldo T. Hattori, Ziyuan Li, Danyu Liu, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20878-20884 (2009)
http://dx.doi.org/10.1364/OE.17.020878


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical dipole nano-antenna can be constructed by placing a sub-wavelength dielectric (e.g., air) gap between two metallic regions. For typical applications using light in the infrared region, the gap width is generally in the range between 50 and 100 nm. Owing to the close proximity of the electrodes, these antennas can generate very intense electric fields that can be used to excite nonlinear effects. For example, it is possible to trigger surface Raman scattering on molecules placed in the vicinity of the nano-antenna, allowing the fabrication of biological sensors and imaging systems in the nanometric scale. However, since nano-antennas are passive devices, they need to receive light from external sources that are generally much larger than the antennas. In this article, we numerically study the coupling of light from microdisk lasers into plasmonic nano-antennas. We show that, by using micro-cavities, we can further enhance the electric fields inside the nano-antennas.

© 2009 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: October 12, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: October 27, 2009
Published: October 30, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Haroldo T. Hattori, Ziyuan Li, Danyu Liu, Ivan D. Rukhlenko, and Malin Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express 17, 20878-20884 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-23-20878


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4237 . [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef] [PubMed]
  5. J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, “Surface Plasmon routing along right angle bent metal stripes,” Appl. Phys. Lett. 87(22), 221101 (2005). [CrossRef]
  6. A. Minovich, H. T. Hattori, I. McKerracher, H. H. Tan, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Enhanced transmission of light through periodic and chirped lattices of nanoholes,” Opt. Commun. 282(10), 2023–2027 (2009). [CrossRef]
  7. V. A. Poldoskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11(1), 65–74 (2002). [CrossRef]
  8. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144 . [CrossRef] [PubMed]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13272 . [CrossRef] [PubMed]
  10. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007). [CrossRef]
  11. M. L. Brongersma, “Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008). [CrossRef]
  12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical nano-antenna,” Nat. Photonics 2(4), 230–233 (2008). [CrossRef]
  13. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  14. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19447 . [CrossRef] [PubMed]
  15. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002). [CrossRef]
  16. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82(21), 3608–3610 (2003). [CrossRef]
  17. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13(9), 3310–3322 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3310 . [CrossRef] [PubMed]
  18. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44(15), 3069–3076 (2005). [CrossRef] [PubMed]
  19. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005). [CrossRef]
  20. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004). [CrossRef] [PubMed]
  21. S. J. Choi, K. Djordjev, and P. D. Dapkus, “Microdisk lasers vertically coupled to output waveguides,” IEEE Photon. Technol. Lett. 15(10), 1330–1332 (2003). [CrossRef]
  22. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175–1182 (2006). [CrossRef]
  23. M. Fujita, R. Ushigone, and T. Baba, “Continuous wave lasing in GaInAsP injection laser with threshold current of 40 µA,” Electron. Lett. 36, 790–791 (2000). [CrossRef]
  24. H. T. Hattori, D. Liu, H. H. Tan, and C. Jagadish, “Large square resonator laser with quasi-single-mode operation,” IEEE Photon. Lett. 21(6), 359–361 (2009). [CrossRef]
  25. Fullwave 6.1 RSOFT design group, 2008, http://www.rsoftdesign.com
  26. Y. Z. Huang and Y. D. Yang, “Mode coupling and vertical radiation loss for whispering gallery modes in 3-D microcavities,” IEEE/OSA, J. Lightwave Technol. 26(11), 1411–1416 (2008). [CrossRef]
  27. H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25(11), 1873–1881 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited