OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Multiple traps created with an inclined dual-fiber system

Yuxiang Liu and Miao Yu  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21680-21690 (2009)
http://dx.doi.org/10.1364/OE.17.021680


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple optical traps allow one to manipulate multiple particles simultaneously, to characterize interactions in colloidal systems, and to assemble particles into complex structures. Most of the current multiple optical traps are realized with microscope objective-based optical tweezers, which are bulky in size. In this article, we created multiple optical traps with an inclined dual-fiber optical tweezers setup. One 3D trap and two 2D traps were formed at different vertical levels with adjustable separations and positions. We demonstrated that this fiber-based trapping system can be used as a simple block to perform multiple functions, such as particle grouping, separation, and stacking. Moreover, we found that multiple beads can be trapped and stacked up in three dimensions. Compared with those formed with objective-based optical tweezers, the multiple traps presented here are small in size and independent of the objective or the substrate, and hence hold the promise to be integrated in microfluidic systems. This fiber-based multiple traps can be used for on-chip parallel manipulation, particle separation, and characterization of interactions of colloidal and biological systems.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: September 4, 2009
Revised Manuscript: November 1, 2009
Manuscript Accepted: November 2, 2009
Published: November 11, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Yuxiang Liu and Miao Yu, "Multiple traps created with an inclined dual-fiber system," Opt. Express 17, 21680-21690 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-24-21680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  3. J. M. Tam, I. Biran, and D. R. Walt, “An imaging fiber-based optical tweezer array for microparticle array assembly,” Appl. Phys. Lett. 84(21), 4289 (2004). [CrossRef]
  4. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994). [CrossRef] [PubMed]
  5. Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13(14), 5434–5439 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5434 . [CrossRef] [PubMed]
  6. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993). [CrossRef] [PubMed]
  7. G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrétaz, Ph. Renaud, and R.-P. Salathé, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78(11), 116101 (2007). [CrossRef] [PubMed]
  8. W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002). [CrossRef]
  9. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26(12), 863–865 (2001). [CrossRef] [PubMed]
  10. K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, “Multiple optical line traps using a single phase-only rectangular ridge,” Appl. Phys. B 80(8), 973–976 (2005). [CrossRef]
  11. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998). [CrossRef]
  12. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001). [CrossRef]
  13. H. Craighead, “Future lab-on-a-chip technologies for interrogating individual molecules,” Nature 442(7101), 387–393 (2006). [CrossRef] [PubMed]
  14. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6075 . [CrossRef] [PubMed]
  15. Y. K. Song, J. Stein, W. R. Patterson, C. W. Bull, K. M. Davitt, M. D. Serruya, J. Zhang, A. V. Nurmikko, and J. P. Donoghue, “A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation,” J. Neural Eng. 4(3), 213–218 (2007). [CrossRef] [PubMed]
  16. D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008). [CrossRef]
  17. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151113 (2008). [CrossRef]
  18. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008). [CrossRef] [PubMed]
  19. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20(7), 1568 (2003). [CrossRef]
  20. K. Taguchi, K. Atsuta, T. Nakata, and M. Ideda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176(1-3), 43–47 (2000). [CrossRef]
  21. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13624 . [CrossRef] [PubMed]
  22. R. C. Gauthier, “Optical trapping: a tool to assist optical machining,” Opt. Laser Technol. 29(7), 389–399 (1997). [CrossRef]
  23. W. Grange, S. Husale, H. Guntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308 (2002). [CrossRef]
  24. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735 (1994). [CrossRef] [PubMed]
  25. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited