OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations

Kresimir Franjic, Michael L. Cowan, Darren Kraemer, and R. J. Dwayne Miller  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22937-22959 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 µm. The peak intensity at 13 GW/cm2 was well below the plasma generation threshold and the applied fluence 0.75 J/cm2 was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

© 2009 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3390) Lasers and laser optics : Laser materials processing
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.1610) Medical optics and biotechnology : Clinical applications

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 9, 2009
Revised Manuscript: November 10, 2009
Manuscript Accepted: November 11, 2009
Published: December 1, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Kresimir Franjic, Michael L. Cowan, Darren Kraemer, and R. J. Dwayne Miller, "Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast
 vibrational excitations," Opt. Express 17, 22937-22959 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. R. Solon, R. Aronson, and G. Gould, “Physiological implications of laser beams,” Science 134(3489), 1506–1508 (1961). [CrossRef] [PubMed]
  2. J. D. Murray, Mathematical Biology, (Springer, New York, 2008).
  3. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003). [CrossRef] [PubMed]
  4. M. H. Niemz, Laser-Tissue Interactions, Fundamentals and Applications, (Springer-Verlag, Berlin Heidelberg, 2007).
  5. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003). [CrossRef] [PubMed]
  6. A. J. Welch and M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue, (Plenum Press, New York, 1995).
  7. A. G. Doukas and T. J. Flotte, “Physical characteristics and biological effects of laser-induced stress waves,” Ultrasound Med. Biol. 22(2), 151–164 (1996). [CrossRef] [PubMed]
  8. A. G. Doukas and N. Kollias, “Transdermal drug delivery with a pressure wave,” Adv. Drug Deliv. Rev. 56(5), 559–579 (2004). [CrossRef] [PubMed]
  9. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994). [CrossRef] [PubMed]
  10. M. S. Hutson, B. Ivanov, A. Jayasinghe, G. Adunas, Y. W. Xiao, M. S. Guo, and J. Kozub, “Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea,” Opt. Express 17(12), 9840–9850 (2009). [CrossRef] [PubMed]
  11. T. Juhasz, R. Kurtz, C. Horvath, C. Suarez, F. Raksi, and G. Spooner, “The femtosecond blade: Applications in corneal surgery,” Opt. Photonics News 13, 24–29 (2002). [CrossRef]
  12. B. Girard, M. Cloutier, D. J. Wilson, C. M. L. Clokie, R. J. D. Miller, and B. C. Wilson, “Microtomographic analysis of healing of femtosecond laser bone calvarial wounds compared to mechanical instruments in mice with and without application of BMP-7,” Lasers Surg. Med. 39(5), 458–467 (2007). [CrossRef] [PubMed]
  13. R. S. Dingus and R. J. Scammon, “Gruneisen-Stress Induced Ablation of Biological Tissue,” Proc. SPIE 1427, 45–54 (1991). [CrossRef]
  14. J. Black and G. Hastings, eds., Handbook of Biomaterial Properties, (Chapman & Hall, London, 1998).
  15. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron. 32(10), 1717–1722 (1996). [CrossRef]
  16. R. Hibst and U. Keller, “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9(4), 338–344 (1989). [CrossRef] [PubMed]
  17. R. K. Shori, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at λ=2.94 μm,” IEEE J. Sel. Top. Quantum Electron. 7(6), 959–970 (2001). [CrossRef]
  18. D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127(1-2), 852–856 (1998). [CrossRef]
  19. D. Fried, R. Shori, and C. Duhn, “Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue,” Proc. SPIE 3248, 78–85 (1998). [CrossRef]
  20. M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74(5), 1194–1199 (1995). [CrossRef] [PubMed]
  21. A. Nitzan, Chemical Dynamics in Condensed Phases, (Oxford University Press, New York, 2006).
  22. R. J. D. Miller, “Vibrational energy relaxation and structural dynamics of heme proteins,” Annu. Rev. Phys. Chem. 42(1), 581–614 (1991). [CrossRef] [PubMed]
  23. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature 434(7030), 199–202 (2005). [CrossRef] [PubMed]
  24. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  25. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 1382–1385 (2003). [CrossRef] [PubMed]
  26. P. H. L. Sit, C. Bellin, B. Barbiellini, D. Testemale, J. L. Hazemann, T. Buslaps, N. Marzari, and A. Shukla, “Hydrogen bonding and coordination in normal and supercritical water from X-ray inelastic scattering,” Phys. Rev. B 76(24), 245413 (2007). [CrossRef]
  27. A. G. Kalinichev, “Molecular simulations of liquid and supercritical water: thermodynamics, structure, and hydrogen bonding,” Rev. Mineral. Geochem. 42, 83–129 (2001). [CrossRef]
  28. K. L. Vodopyanov, M. E. Karasev, L. A. Kulevskii, A. V. Lukashev, and G. R. Toker, “Dynamics of Interaction of λ=2.94 μm Laser-Emission with Thin-Layer of Liquid Water,” Pis'ma Zh. Tekh. Fiz. 14, 324–329 (1988).
  29. K. L. Vodopyanov, “Saturation studies of H2O and HDO Near 3400 cm–1 using intense picosecond laser pulses,” J. Chem. Phys. 94(8), 5389–5393 (1991). [CrossRef]
  30. T. Schäfer, J. Lindner, P. Vöhringer, and D. Schwarzer, “OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O,” J. Chem. Phys. 130(22), 224502 (2009). [CrossRef] [PubMed]
  31. K. L. Vodopyanov, L. A. Kulevsky, V. G. Mikhalevich, and A. M. Rodin, “Laser-Induced Generation of Subnanosecond Sound Pulses in Liquids,” Zh. Eksp. Teor. Fiz. 91, 114–121 (1986).
  32. U. Störkel, K. L. Vodopyanov, and W. Grill, “GHz ultrasound wave packets in water generated by an Er laser,” J. Phys. D 31(18), 2258–2263 (1998). [CrossRef]
  33. W. Wagner and A. Pruss, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387–535 (1999). [CrossRef]
  34. K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)
  35. R. O. Esenaliev, A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Laser-Ablation of Aqueous-Solutions with Spatially Homogeneous and Heterogeneous Absorption,” Appl. Phys. B 59(1), 73–81 (1994). [CrossRef]
  36. S. L. Jacques, A. A. Oraevsky, R. Thompson, and B. S. Gerstman, “A Working Theory and Experiments on Photomechanical Disruption of Melanosomes to Explain the Threshold for Minimal Visible Retinal Lesions for Sub-ns Laser-Pulses,” Proc. SPIE 2134, 54–65 (1994).
  37. S. Meng and E. Kaxiras, “Mechanisms for ultrafast nonradiative relaxation in electronically excited eumelanin constituents,” Biophys. J. 95(9), 4396–4402 (2008). [CrossRef] [PubMed]
  38. G. Paltauf and H. Schmidt-Kloiber, “Photoacoustic cavitation in spherical and cylindrical absorbers,” Appl. Phys.Mater. Sci . 68, 525–531 (1999). [CrossRef]
  39. M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic Waves Generated by Absorption of Laser-Radiation in Optically Thin Cylinders,” J. Acoust. Soc. Am. 94(2), 931–940 (1993). [CrossRef]
  40. J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(55 Pt B), 5772–5789 (1999). [CrossRef] [PubMed]
  41. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
  42. A. Nanci, and A. Ten Cate, Ten Cate's oral histology: development, structure, and function, (Mosby, St. Louis, 2003).
  43. G. H. Dibdin, “The Water in Human Dental Enamel and Its Diffusional Exchange Measured by Clearance of Tritiated Water from Enamel Slabs of Varying Thickness,” Caries Res. 27(2), 81–86 (1993). [CrossRef] [PubMed]
  44. E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proc. Natl. Acad. Sci. U.S.A. 105(17), 6266–6271 (2008). [CrossRef] [PubMed]
  45. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The Thermoelastic Basis of Short Pulsed Laser Ablation of Biological Tissue,” Proc. Natl. Acad. Sci. U.S.A. 92(6), 1960–1964 (1995). [CrossRef] [PubMed]
  46. A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Physical mechanisms of pulsed infrared laser ablation of biological tissues,” Proc. SPIE 3343, 69–77 (1998). [CrossRef]
  47. M. H. Niemz, L. Eisenmann, and T. Pioch, Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz 103, 1252–1256 (1993).
  48. A. V. Verde, M. M. D. Ramos, and A. M. Stoneham, “The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation,” Phys. Med. Biol. 52(10), 2703–2717 (2007). [CrossRef] [PubMed]
  49. M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005). [CrossRef] [PubMed]
  50. H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, “From brittle to ductile fracture of bone,” Nat. Mater. 5(1), 52–55 (2006). [CrossRef] [PubMed]
  51. K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues, (CRC, Boca Raton, 1993).
  52. K. K. Shung, “Ultrasound and Tissue Interaction,” in Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, eds., (Informa HealthCare, 2008).
  53. G. W. C. Kaye, and T. H. Laby, Tables of Physical and Chemical Constants: And Some Mathematical Functions, (Longman, 1995).
  54. C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” J. Acoust. Soc. Am. 94(4), 1944–1952 (1993). [CrossRef] [PubMed]
  55. T. D. Mast, L. P. Souriau, D. L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space method for large-scale models of wave propagation in tissue,” IEEE T. Ultrason. Ferr. 48(2), 341–354 (2001). [CrossRef]
  56. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121(6), 3453–3464 (2007). [CrossRef] [PubMed]
  57. A. D. Pierce, “The wave theory of sound,” in Acoustics: An Introduction to Its Physical Principles and Applications, (Acoustical Society of America, Woodbury, NY, 1989).
  58. B. Cox, Department of Medical Physics and Bioengineering, University College London, UK, (personal communication, 2009).
  59. J. Ge, F. Z. Cui, X. M. Wang, and H. L. Feng, “Property variations in the prism and the organic sheath within enamel by nanoindentation,” Biomaterials 26(16), 3333–3339 (2005). [CrossRef] [PubMed]
  60. N. Meredith, D. J. Setchell, and S. A. V. Swanson, “The application of thermoelastic analysis to study stresses in human teeth,” J. Oral Rehabil. 24(11), 813–822 (1997). [CrossRef] [PubMed]
  61. D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res. 6(3), 221–233 (1972). [CrossRef] [PubMed]
  62. M. Giannini, C. J. Soares, and R. M. de Carvalho, “Ultimate tensile strength of tooth structures,” Dent. Mater. 20(4), 322–329 (2004). [CrossRef] [PubMed]
  63. L. A. Chernov, Wave propagation in a random medium, (Dover Publications, 1967).
  64. K. Franjic, F. Talbot, and R. J. D. Miller, (to be submitted)
  65. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997). [CrossRef] [PubMed]
  66. D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24(4), 813–818 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited