OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Quantitative study of single molecule location estimation techniques

Anish V. Abraham, Sripad Ram, Jerry Chao, E. S. Ward, and Raimund J. Ober  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23352-23373 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

© 2009 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Image Processing

Original Manuscript: June 1, 2009
Revised Manuscript: October 31, 2009
Manuscript Accepted: December 2, 2009
Published: December 7, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Anish V. Abraham, Sripad Ram, Jerry Chao, E. S. Ward, and Raimund J. Ober, "Quantitative study of single molecule location estimation techniques," Opt. Express 17, 23352-23373 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. S. Xie, P. J. Choi, G. W. Li, N. K. Lee, and G. Lia, "Single-molecule approach to molecular biology in living bacterial cells," Annu. Rev. Biophys. 37, 417-444 (2008). [CrossRef] [PubMed]
  2. W. E. Moerner, "New directions in single-molecule imaging and analysis," Proc. Natl. Acad. Sci. U.S.A. 104, 12596-12602 (2007). [CrossRef] [PubMed]
  3. M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, "Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking," Science 302, 442-445 (2003). [CrossRef] [PubMed]
  4. P. H. M. Lommerse, G. A. Blab, L. Cognet, G. S. Harms, B. E. Snaar-Jagalska, H. P. Spaink, and T. Schmidt, "Single-molecule imaging of the H-Ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane," Biophys. J. 86, 609-616 (2004). [CrossRef]
  5. P. H. M. Lommerse, B. E. Snaar-Jagalska, H. P. Spaink, and T. Schmidt, "Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation," J. Cell. Sci. 118, 1799-1809 (2005). [CrossRef] [PubMed]
  6. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, "Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques," Biophys. J. 86, 4075-4093 (2004). [CrossRef] [PubMed]
  7. M. J. Rust, M. Batest, X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Meth. 3, 793-796 (2006). [CrossRef]
  8. B. Huang, W. Wang, M. Bates, and X. Zhuang, "Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science 319, 810-813 (2008). [CrossRef] [PubMed]
  9. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  10. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  11. M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison of algorithms for tracking single fluorescent particles," Biophys. J. 81, 2378-2388 (2001). [CrossRef] [PubMed]
  12. S. M. Kay, Fundamentals of statistical signal processing (Prentice Hall, 1993).
  13. R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single-molecule microscopy," Biophys. J. 86, 1185-1200 (2004). [CrossRef] [PubMed]
  14. S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidim. Syst. Sign. Process. 17, 27-57 (2006). [CrossRef]
  15. J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. 18, 1062-1071 (2001). [CrossRef]
  16. P. J. Verveer and T. M. Jovin, "Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy," J. Opt. Soc. Am. 14, 1696-1706 (1997). [CrossRef]
  17. R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002). [CrossRef] [PubMed]
  18. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V walks hand-overhand: single fluorophore imaging with 1.5-nm localization," Science. 300, 2061-2065 (2003). [CrossRef] [PubMed]
  19. X. Qu, D. Wu, L. Mets, and N. F. Scherer, "Nanometer-localized multiple single-molecule fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 101, 11298-11303 (2004). [CrossRef] [PubMed]
  20. H. Park, G. T. Hanson, S. R. Duff, and P. R. Selvin, "Nanometer localization of single ReAsH molecules," J. Microsc. 216, 199-205 (2004). [CrossRef] [PubMed]
  21. J. H. Kim and R. G. Larson, "Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules," Nucleic Acids Res. 35, 3848-3858 (2007). [CrossRef] [PubMed]
  22. S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE. 5699, 426-435 (2005). [CrossRef] [PubMed]
  23. "EstimationTool," http://www4.utsouthwestern.edu/wardlab/EstimationTool.
  24. "FandPLimitTool," http://www4.utsouthwestern.edu/wardlab/FandPLimitTool.
  25. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).
  26. P. Torok and F.-J. Kao, Optical Imaging and Microscopy (Springer, 2003).
  27. B. Zhang, J. Zerubia, and J. C. Olivo-Marin, "Gaussian approximations of fluorescence microscope point-spread function models," Appl. Opt. 46, 1819-1829 (2007). [CrossRef] [PubMed]
  28. J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, "Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP," Nat. Methods. 5, 947-949 (2008). [CrossRef] [PubMed]
  29. S. Zacks, Theory of Statistical Inference (John Wiley and Sons, 1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited