OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle

Valérie Guieu, Patrick Garrigue, François Lagugné-Labarthet, Laurent Servant, Neso Sojic, and David Talaga  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24030-24035 (2009)
http://dx.doi.org/10.1364/OE.17.024030


View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Remote surface enhanced Raman spectroscopy (SERS) imaging of an adsorbed monolayer was demonstrated through a nanostructured array of conical tips inscribed onto the distal face of a 30 cm optical fiber bundle. Despite intense Raman signal from the germanium oxide doped fibers, the Raman signal of an adsorbed monolayer of a reference compound (benzene thiol) was detected in the fingerprint region. This opens up the possibility of local remote imaging through an optical fiber that embeds a SERS active platform.

© 2009 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Sensors

History
Original Manuscript: November 17, 2009
Revised Manuscript: December 2, 2009
Manuscript Accepted: December 2, 2009
Published: December 16, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Valérie Guieu, Patrick Garrigue, François Lagugné-Labarthet, Laurent Servant, Neso Sojic, and David Talaga, "Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle," Opt. Express 17, 24030-24035 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-26-24030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Alvarez-Puebla, D. S. dos Santos, and R. F. Aroca, “SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials,” Analyst (Lond.) 132(12), 1210–1214 (2007). [CrossRef]
  2. Y. Liu, K. Chao, M. S. Kim, D. Tuschel, O. Olkhovyk, and R. J. Priore, “Potential of Raman spectroscopy and imaging methods for rapid and routine screening of the presence of melamine in animal feed and foods,” Appl. Spectrosc. 63(4), 477–480 (2009). [CrossRef] [PubMed]
  3. C. L. Brosseau, K. S. Rayner, F. Casadio, C. M. Grzywacz, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media,” Anal. Chem. 81(17), 7443–7447 (2009). [CrossRef] [PubMed]
  4. C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93(2), 668–673 (2007). [CrossRef] [PubMed]
  5. A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008). [CrossRef] [PubMed]
  6. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977). [CrossRef]
  7. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006). [CrossRef] [PubMed]
  8. N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. Reculusa, D. M. Bassani, E. Gillies, and F. Lagugné-Labarthet, “Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir-Blodgett deposition and electron-beam lithography techniques,” Langmuir 24(19), 11313–11321 (2008). [CrossRef] [PubMed]
  9. V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic, “Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging,” Small 4(1), 96–99 (2008). [CrossRef] [PubMed]
  10. L. Novotny, “Optical antennas tuned to pitch,” Nature 455(7215), 887 (2008). [CrossRef]
  11. S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discuss. 132, 191–199, discussion 227–247 (2006). [CrossRef] [PubMed]
  12. P. Matousek, “Deep non-invasive Raman spectroscopy of living tissue and powders,” Chem. Soc. Rev. 36(8), 1292–1304 (2007). [CrossRef] [PubMed]
  13. H. G. Schulze, L. S. Greek, C. J. Barbosa, M. W. Blades, B. B. Gorzalka, and R. F. B. Turner, “Measurement of some small-molecule and peptide neurotransmitters in-vitro using a fiber-optic probe with pulsed ultraviolet resonance Raman spectroscopy,” J. Neurosci. Methods 92(1-2), 15–24 (1999). [CrossRef] [PubMed]
  14. C. Viets and W. Hill, “Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31(7), 625–631 (2000). [CrossRef]
  15. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9(3), 1132–1138 (2009). [CrossRef] [PubMed]
  16. J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393(4), 1135–1141 (2009). [CrossRef] [PubMed]
  17. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38(4), 377–382 (2007). [CrossRef]
  18. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394(7), 1761–1774 (2009). [CrossRef] [PubMed]
  19. A. Lucotti and G. Zerbi, ““Fiber-optic SERS sensor with optimized geometry,” Sensor. Actuat, B 121(2), 356–364 (2007). [CrossRef]
  20. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24(5), 1531–1535 (2009). [CrossRef] [PubMed]
  21. V. Guieu, D. Talaga, L. Servant, N. Sojic, and F. Lagugné-Labarthet, “Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array,” J. Phys. Chem. C 113(3), 874–881 (2009). [CrossRef]
  22. C. N. LaFratta and D. R. Walt, “Very high density sensing arrays,” Chem. Rev. 108(2), 614–637 (2008). [CrossRef] [PubMed]
  23. H. H. Gorris and D. R. Walt, “Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies,” J. Am. Chem. Soc. 131(17), 6277–6282 (2009). [CrossRef] [PubMed]
  24. A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem. 381(1), 165–172 (2005). [CrossRef] [PubMed]
  25. G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009). [CrossRef]
  26. E. C. Le Ru, C. Galloway, and P. G. Etchegoin, “On the connection between optical absorption/extinction and SERS enhancements,” Phys. Chem. Chem. Phys. 8(26), 3083–3087 (2006). [CrossRef] [PubMed]
  27. J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005). [CrossRef]
  28. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82(18), 3095–3097 (2003). [CrossRef]
  29. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited