OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range

Sepideh Hariri, Alireza A. Moayed, Aphrodite Dracopoulos, Chulho Hyun, Shelley Boyd, and Kostadinka Bizheva  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24304-24316 (2009)
http://dx.doi.org/10.1364/OE.17.024304


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A computational model was developed to evaluate the limitations to the highest axial resolution, achievable with ultrahigh resolution optical coherence tomography (UHROCT) in the 1060nm wavelength region for in-vivo imaging of the human and rodent retina. The model considers parameters such as the wavelength dependent water absorption, the average length of the human and rodent eyes, and the power limitations for the imaging beam as defined in the ANSI standard. A custom-built light source with re-shaped spectrum was used to verify experimentally the results from the computational model. Axial OCT resolution of 4.2µm and 7.7µm was measured from a mirror reflection with the custom light source by propagating the imaging beam through water cells with 5mm and 25mm thickness, corresponding to the average axial length of the rodent and human eye respectively. Assuming an average refractive index of 1.38 for retinal tissue, the expected axial OCT resolution in the rodent and human retina is 3µm and 5.7µm respectively. Retinal tomograms acquired in-vivo from the rat eye with the modified light source show clear visualization of all intraretinal layers, as well as a network of capillaries (~10µm in diameter) in the inner- and outer plexiform layers of the retina.

© 2009 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 8, 2009
Revised Manuscript: November 19, 2009
Manuscript Accepted: December 14, 2009
Published: December 18, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Sepideh Hariri, Alireza A. Moayed, Aphrodite Dracopoulos, Chulho Hyun, Shelley Boyd, and Kostadinka Bizheva, "Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range," Opt. Express 17, 24304-24316 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-26-24304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003). [CrossRef] [PubMed]
  2. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  3. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006). [CrossRef] [PubMed]
  4. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, “Swept laser source at 1 ≰m for Fourier domain optical coherence tomography,” Appl. Phys. Lett. 89(7), 073901 (2006). [CrossRef]
  5. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12(4), 041211 (2007). [CrossRef] [PubMed]
  6. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  7. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  8. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33(21), 2479–2481 (2008). [PubMed]
  9. B. Považay, B. Hofer, C. Torti, B. M. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express 17(5), 4134–4150 (2009). [CrossRef] [PubMed]
  10. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  11. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49(10), 4545–4552 (2008). [CrossRef] [PubMed]
  12. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(1), 405–413 (2008). [CrossRef] [PubMed]
  13. Y. L. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt. 14(2), 024016 (2009). [CrossRef] [PubMed]
  14. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006). [CrossRef] [PubMed]
  15. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006). [CrossRef] [PubMed]
  16. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005). [CrossRef] [PubMed]
  17. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995). [CrossRef] [PubMed]
  18. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157 (1996). [CrossRef]
  19. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  20. G. Häusler and M. W. Lindner, “Coherence radar' and ``spectral radar' -New tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  21. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  22. B. Povazay, B. Hermann, V. Kajic, B. Hofer and W. Drexler, “High Speed, Spectrometer Based Optical Coherence Tomography at 1050 nm for Isotropic 3-D OCT Imaging and Visualization of Retinal and Choroidal Vasculature,” OSA (BIOMED), paper BMB5 (2008).
  23. W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8(1-3), 324–360 (1968). [CrossRef]
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200nm to 200µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  25. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27(6), 406–408 (2002). [CrossRef] [PubMed]
  26. A. N. S. Institute, “Safe use of lasers,” ANSI Z136.1–2000, American National Standards Institute, (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1063 KB)     
» Media 2: MOV (1544 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited