OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Spectral determination of a two-parametric phase function for polydispersive scattering liquids

Tobias Lindbergh, Ingemar Fredriksson, Marcus Larsson, and Tomas Strömberg  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1610-1621 (2009)
http://dx.doi.org/10.1364/OE.17.001610


View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for determining a two-parametric Gegenbauer-kernel phase function that accurately describes the diffuse reflectance from a polydispersive scattering media at small source-detector separations (0.23 to 1.2 mm), is presented. The method involves spectral collimated transmission measurements, spatially resolved spectral diffuse reflectance (SRDR) measurements, and inverse Monte Carlo technique. Both absolute calibration (using a monodispersive polystyrene microsphere suspension) and relative calibration (eliminating differences between fibers) of SRDR spectra yielded comparable results. When applied to water dilutions of milk, simulated and measured spectra deviated less than 6.5% and 2.5% for the absolute and relative calibration case, respectively, even for the closest fiber separation. Corresponding values for milk including ink as an absorber, were 13.4% and 7.3%.

© 2009 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(300.6550) Spectroscopy : Spectroscopy, visible
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Scattering

History
Original Manuscript: November 18, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: January 19, 2009
Published: January 27, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Tobias Lindbergh, Ingemar Fredriksson, Marcus Larsson, and Tomas Strömberg, "Spectral determination of a two-parametric phase function for polydispersive scattering liquids," Opt. Express 17, 1610-1621 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-3-1610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102-1 - 041102-16 (2006). [CrossRef] [PubMed]
  2. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  3. F. Bevilacqua and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999). [CrossRef]
  4. P. Thueler, I. Charvet, F. Bevilacqua, M. S. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," J. Biomed. Opt. 8, 495-503 (2003). [CrossRef] [PubMed]
  5. A. Kienle, F. K. Forster, and R. Hibst, "Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance," Opt. Lett. 26, 1571-1573 (2001). [CrossRef]
  6. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006). [CrossRef] [PubMed]
  7. R. Michels, F. Foschum, and A. Kienle, "Optical properties of fat emulsions," Opt. Express 16, 5907-5925 (2008). [CrossRef] [PubMed]
  8. C. L. Crofcheck, F. A. Payne, and M. P. Mengüc, "Characterization of milk properties with a radiative transfer model," Appl. Opt. 41, 2028-2037 (2002). [CrossRef] [PubMed]
  9. M. C. Ambrose Griffin and W. G. Griffin, "A simple turbidimetric method for the determination of the refractive index of large colloidal particles applied to casein micelles," J. Colloid Interface Sci. 104, 409-415 (1985). [CrossRef]
  10. L. O. Reynolds and N. J. McCormick, "Approximate two-parameter phase function for light scattering," J. Opt. Soc. Am. 70, 1206-1212 (1980). [CrossRef]
  11. L. Wang and S. L. Jacques, "Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission," Phys. Med. Biol. 39, 2349-2354 (1994). [CrossRef] [PubMed]
  12. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  13. E. Häggblad, T. Lindbergh, M. G. D. Karlsson, M. Larsson, H. Casimir-Ahn, E. G. Salerud, and T. Strömberg, "Myocardial tissue oxygenation estimated with calibrated diffuse reflectance spectroscopy during coronary artery bypass grafting," J. Biomed. Opt. 13, 054030-1 - 054030-9 (2008). [CrossRef] [PubMed]
  14. H. Buiteveld, J. M. H. Hakvoort, and M. Donze, "The optical properties of pure water," in Ocean Optics XII - Proc. SPIE 2258, 174-183 (1994).
  15. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-µm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  16. I. D. Nikolov and C. D. Ivanov, "Optical plastic refractive measurements in the visible and the near-infrared regions," Appl. Opt. 39, 2067-2070 (2000). [CrossRef]
  17. E. Alerstam, S. Andersson-Engels, and T. Svensson, "White Monte Carlo for time-resolved photon migration," J. Biomed. Opt. 13, 041304-1 - 041304-10 (2008). [CrossRef] [PubMed]
  18. A. Giusto, R. Saija, M. A. Iati, P. Denti, F. Borghese, and O. I. Sindoni, "Optical properties of high-density dispersions of particles: Application to intralipid solutions," Appl. Opt. 42, 4375-4380 (2003). [CrossRef] [PubMed]
  19. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994). [CrossRef] [PubMed]
  20. G. Zaccanti, S. Del Bianco, and F. Martelli, "Measurements of optical properties of high-density media," Appl. Opt. 42, 4023-4030 (2003). [CrossRef] [PubMed]
  21. P. Walstra and R. Jenness, Dairy Chemistry and Physics (Wiley, New York, 1984).
  22. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, "In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy," J. Biomed. Opt. 10, 034018-1034018-15 (2005). [CrossRef] [PubMed]
  23. S. L. Jacques, Optical fiber reflectance spectroscopy, http://omlc.ogi.edu/news/oct03/saratov/index.htm.
  24. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  25. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003). [CrossRef] [PubMed]
  26. J. C. Finlay and T. H. Foster, "Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation," Med. Phys. 31, 1949-1959 (2004). [CrossRef] [PubMed]
  27. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, "In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy," Opt. Lett. 29, 1087-1089 (2004). [CrossRef] [PubMed]
  28. E. Tinet, S. Avrillier, and J. M. Tualle, "Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media," J. Opt. Soc. Am. A 13, 1903-1915 (1996). [CrossRef]
  29. T. Lindbergh, M. Larsson, I. Fredriksson, and T. Strömberg, "Reduced scattering coefficient determination by non-contact oblique angle illumination: Methodological considerations," Proc. SPIE, 64350I-1 - 64350I-12 (2007).
  30. S. A. Ramakrishna and K. D. Rao, "Estimation of light transport parameters in biological media using coherent backscattering," Pramana J. Phys. 54, 255-267 (2000). [CrossRef]
  31. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements," Appl. Opt. 35, 6797-6809 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited