OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Investigation of the influence of the aberration induced by a plane interface on STED microscopy

Suhui Deng, Li Liu, Ya Cheng, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1714-1725 (2009)
http://dx.doi.org/10.1364/OE.17.001714


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: November 14, 2008
Revised Manuscript: December 22, 2008
Manuscript Accepted: January 2, 2009
Published: January 29, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Suhui Deng, Li Liu, Ya Cheng, Ruxin Li, and Zhizhan Xu, "Investigation of the influence of the aberration induced by a plane interface on STED microscopy," Opt. Express 17, 1714-1725 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-3-1714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101-1103 (2002). [CrossRef] [PubMed]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4714 (1997). [CrossRef]
  3. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, S. Ishiuchi, M. Sakai, and M. Fujii, "Two-color far-field super-resolution microscope using a doughnut beam," Chem. Phys. Lett. 371, 634-639 (2004). [CrossRef]
  4. M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, "Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy," Chem. Phys. Lett. 439, 171-176 (2007). [CrossRef]
  5. S. W. Hell, "Far-Field Optical Nanoscopy," Science 316, 1153-1158 (2007). [CrossRef] [PubMed]
  6. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U.S.A. 102, 17565-17569 (2005). [CrossRef] [PubMed]
  7. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  8. S. W. Hell and M. Kroug, "Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1999). [CrossRef]
  9. V. Westphal and S. W. Hell, "Nanoscale Resolution in the Focal Plane of an Optical Microscope," Phys. Rev. Lett. 94, 143903 (2005). [CrossRef] [PubMed]
  10. K. Willig, R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, "Nanoscale resolution in GFP-based microscopy," Nat. Methods,  3, 721-723 (2006). [CrossRef] [PubMed]
  11. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006). [CrossRef] [PubMed]
  12. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Fluctuation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94, 178104 (2005). [CrossRef] [PubMed]
  13. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U.S.A 97, 8206-8210 (2000). [CrossRef] [PubMed]
  14. T. A. Klar, E. Engel, and S. W. Hell, "Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64066613 (2001). [CrossRef]
  15. E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating λ/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003). [CrossRef]
  16. J. Keller, A. Schönle, and S. W. Hell, "Efficient fluorescence inhibition patterns for RESOLFT microscopy," Opt. Express 15, 3361-3371 (2007). [CrossRef] [PubMed]
  17. P. Török and P. R. T. Munro, "The use of Gauss-Laguerre vector beams in STED microscopy," Opt. Express 12, 3605-3617 (2004). [CrossRef] [PubMed]
  18. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. R. Soc. London A 253, 349-357 (1959). [CrossRef]
  19. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systemsII.Structure of the image field in an aplanatic system," Proc. R. Soc. London A 253, 358-379 (1959). [CrossRef]
  20. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  21. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Phys. 36, 2305-2312 (1997).
  22. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, "Comparison of different theories for focusing through a plane interface," J. Opt. Soc. Am. A 14, 1482-1490 (1997). [CrossRef]
  23. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  24. L. E. Helseth, "Smallest focal hole," Opt. Commun. 257, 1-8 (2006). [CrossRef]
  25. R. K. Singh, P. Senthilkumaran, and K. Singh, "Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam," J. Opt. Soc. Am. A 251307-1318 (2008). [CrossRef]
  26. D. P. Biss and T. G. Brown, "Primary aberrations in focused radially polarized vortex beams," Opt. Express 12, 384-393 (2004). [CrossRef] [PubMed]
  27. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J. Hotta, "Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams," Opt. Express 15, 3372-3383 (2007). [CrossRef] [PubMed]
  28. D. Ganic, X. Gan, and M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003). [CrossRef] [PubMed]
  29. N. Bokor, Y. Iketaki, T. Watanabe and M. Fujii, "Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead," Opt. Express,  13,10440-10447 (2005). [CrossRef] [PubMed]
  30. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, "Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization," Opt. Lett. 32, 2357-2359 (2007). [CrossRef] [PubMed]
  31. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, "STED microscopy resolves nanoparticle assemblies," New. J. Phys. 8, 106 (2006). [CrossRef]
  32. J. W. M. Chon, X. Gan, and M. Gu, "Splitting of the focal spot of a high numerical-aperture objective in free space," Appl. Phys. Lett. 81, 1576-1578 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited