OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Numerical simulation of an optical chromatographic separator

Alex Terray, H. D. Ladouceur, Mark Hammond, and Sean J. Hart  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 2024-2032 (2009)
http://dx.doi.org/10.1364/OE.17.002024


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical chromatography achieves microscale optical manipulation through the balance of optical and hydrodynamic forces on micron sized particles entrained in microfluidic flow traveling counter to the propagation of a mildly focused laser beam. The optical pressure force on a particle is specific to each particle’s size, shape and refractive index. So far, these properties have been exploited in our lab to concentrate, purify and separate injected samples. But as this method advances into more complex optofluidic systems, a need to better predict behavior is necessary. Here, we present the development and experimental verification of a robust technique to simulate particle trajectories in our optical chromatographic device. We also show how this new tool can be used to gather better qualitative and quantitative understanding in a two component particle separation.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: September 29, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 14, 2008
Published: January 30, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Alex Terray, H. D. Ladouceur, Mark Hammond, and Sean J. Hart, "Numerical simulation of an optical chromatographic separator," Opt. Express 17, 2024-2032 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-3-2024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000). [CrossRef]
  2. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  3. S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003). [CrossRef]
  4. S. J. Hart, A. V. Terray, and J. Arnold, "Particle separation and collection using an optical chromatographic filter," Appl. Phys. Lett. 91 (2007). [CrossRef]
  5. D. A. Ateya, J. S. Erickson, P. B. HowellJr, L. R. Hilliard, J. P. Golden, and F. S. Ligler, "The good, the bad, and the tiny: A review of microflow cytometry," Anal. Bioanal. Chem. 391, 1485-1498 (2008). [CrossRef] [PubMed]
  6. K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007). [CrossRef]
  7. K. Ladavak, K. Kasza, and D. Grier, "Sorting by Periodic Potential Energy Landscapes: Optical Fractionation," Phys. Rev. E 70, 010901 (2004).
  8. T. Imasaka, "Optical chromatography. A new tool for separation of particles," Analusis 26, M53-M55 (1998). [CrossRef]
  9. S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, "Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis," Anal. Chem. 78, 3221-3225 (2006). [CrossRef] [PubMed]
  10. S. J. Hart, A. Terray, K. L. Kuhn, J. Arnold, and T. A. Leski, "Optical chromatography for biological separations," in Proc. SPIE(2004), pp. 35-47. [CrossRef]
  11. J. Makihara, T. Kaneta, and T. Imasaka, "Optical chromatography: Size determination by eluting particles," Talanta 48, 551-557 (1999). [CrossRef]
  12. A. Terray, J. Arnold, S. D. Sundbeck, T. A. Leski, and S. J. Hart, "Preparative separations using optical chromatography," in Proc. SPIE(2007). [CrossRef]
  13. D. Bonessi, K. Bonin, and T. Walker, "Optical forces on particles of arbitrary shape and size," J. Opt. A: Pure Appl. Opt. 9, S228-S234 (2007). [CrossRef]
  14. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007). [CrossRef]
  15. R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005). [CrossRef] [PubMed]
  16. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, "Optical deflection and sorting of microparticles in a near-field optical geometry," Opt. Express 16, 3712-3726 (2008). [CrossRef] [PubMed]
  17. R. C. Gauthier and M. Ashman, "Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams," Appl. Opt. 37, 6421-6431 (1998). [CrossRef]
  18. B. K. Sang, Y. Y. Sang, J. S. Hyung, and S. K. Sang, "Cross-type optical particle separation in a microchannel," Anal. Chem. 80, 2628-2630 (2008). [CrossRef]
  19. Y. R. Chang, L. Hsu, and S. Chi, "Optical trapping of a spherically symmetric sphere in the ray-optics regime: A model for optical tweezers upon cells," Appl. Opt. 45, 3885-3892 (2006). [CrossRef] [PubMed]
  20. P. A. Maia Neto and H. M. Nussenzveig, "Theory of optical tweezers," Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  21. T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, and P. Koltay, "Computational fluid dynamics (CFD) software tools for microfluidic applications - A case study," Comput. Fluids 37, 218-235 (2008). [CrossRef]
  22. M. C. Kim, Z. Wang, R. H. W. Lam, and T. Thorsen, "Building a better cell trap: Applying Lagrangian modeling to the design of microfluidic devices for cell biology," J. Appl. Phys. 103 (2008). [CrossRef] [PubMed]
  23. Fluent 6.3 User's Guide (ANSYS, Inc., 2006).
  24. S. B. Kim and S. S. Kim, "Radiation forces on spheres in loosely focused Gaussian beam: Ray-optics regime," J. Opt. Soc. Am. B 23, 897-903 (2006). [CrossRef]
  25. Fluent 6.3 UDF Manual (ANSYS, Inc., 2006).
  26. S. Ebert, K. Travis, B. Lincoln, and J. Guck, "Fluorescence ratio thermometry in a microfluidic dual-beam laser trap," Opt. Express 15, 15493-15499 (2007). [CrossRef] [PubMed]
  27. T. Kaneta, Y. Ishidzu, N. Mishima, and T. Imasaka, "Theory of optical chromatography," Anal. Chem. 69, 2701-2710 (1997). [CrossRef] [PubMed]
  28. A. Terray, J. Arnold, S. D. Sundbeck, T. A. Leski, and S. J. Hart, "Preparative Separations using Optical Chromatography," Proc. SPIE 6644, 66441U (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: MOV (1661 KB)     
» Media 2: MOV (566 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited