OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Numerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-Stokes Raman scattering microscopy

Jian Lin, Haifeng Wang, Wei Zheng, Fake Lu, Colin Sheppard, and Huang Zhiwei  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2423-2434 (2009)
http://dx.doi.org/10.1364/OE.17.002423


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ the finite-difference time-domain (FDTD) technique as a numerical approach to studying the effects of polarization, scatterers’ sizes and orientations on near-field coherent anti-Stokes Raman scattering (CARS) microscopy imaging. The results show that to acquire better image contrast and larger near-field CARS signals, the scatterers with diameters of less than three-eighths of the pump field wavelength (λp ) are preferable to be oriented along the polarization direction of the excitation light fields. It is also found that when the scatterers’ sizes are smaller than half a wavelength of the pump field, the perpendicular polarization component of the induced near-field CARS radiations is strictly confined within the regions at the scatterer-water interface or the subsurface of scatterers, yielding a high image contrast (up to 200) with a spatial resolution of λp /16. This study indicates that perpendicular polarization components of near-field CARS microscopy could be used to uncover very fine structures of intra- and/or inter- cellular organelles in cells with nanoscale resolutions.

© 2009 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Microscopy

History
Original Manuscript: October 27, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: February 1, 2009
Published: February 5, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jian Lin, Haifeng Wang, Wei Zheng, Fake Lu, Colin Sheppard, and Zhiwei Huang, "Numerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-Stokes Raman scattering microscopy," Opt. Express 17, 2423-2434 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-4-2423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. 102, 16807-16812 (2005). [CrossRef] [PubMed]
  2. A. Zumbushch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  3. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express 15, 12076-12087 (2007). [CrossRef] [PubMed]
  4. E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. 98, 1577-1582 (2001). [CrossRef] [PubMed]
  5. F. Lu, W. Zheng, and Z. Huang, "Heterodyne polarization coherent anti-Stokes Raman scattering microscopy," Appl. Phys. Lett. 92, 123901 (2008). [CrossRef]
  6. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microcopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  7. X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-735 (2006). [CrossRef] [PubMed]
  8. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, "Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy," Opt. Lett. 33, 602-604 (2008). [CrossRef] [PubMed]
  9. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, "Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. 100, 9826-9830 (2003). [CrossRef] [PubMed]
  10. G. W. Wurpel, H. A. Rinia, and M. Muller, "Imaging orientational order and lipid density in multilamellar vescles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005). [CrossRef] [PubMed]
  11. H. Wang. Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J 89, 581-591 (2005). [CrossRef] [PubMed]
  12. X. S. Xie, J. Yu, and W. Yang, "Living cells as test tubes," Science 312, 228-230 (2006). [CrossRef] [PubMed]
  13. F. Lu, W. Zheng and Z. Huang, "Elliptically polarized coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 33, 2842-2844 (2008). [CrossRef] [PubMed]
  14. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007). [CrossRef] [PubMed]
  15. F. Lu, W. Zheng, and Z. Huang, "Phase-controlled polarization coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 25, 1907-1913 (2008). [CrossRef]
  16. J. X. Cheng and X. S. Xie, "Green’s function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002). [CrossRef]
  17. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004). [CrossRef] [PubMed]
  18. Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki, and S. Kawata, "Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode," Appl. Phys. Lett. 88, 143109 (2006). [CrossRef]
  19. S. Kawata, I. Yasushi, and I. Taro, "Near-field optics and spectroscopy for molecular nano-imaging," Sci. Progress 87, 25-49 (2004). [CrossRef]
  20. B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86, 131110 (2005). [CrossRef]
  21. D. Courjon and C. Bainier, "Near field microscopy and near field optics," Rep. Prog. Phys. 57, 989-1028 (1994). [CrossRef]
  22. B. Jia, X. Gan, and M. Gu, "Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD," Opt. Express 13, 6821-6827 (2005). [CrossRef] [PubMed]
  23. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Saykally, "Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM)," J. Phys. Chem. B 106, 8489-8492 (2002). [CrossRef]
  24. N. Djaker, D. Gachet, N. Sandeau, P. F. Lenne, and R. Hervé, "Refractive effects in coherent anti-Stokes Raman scattering microscopy," Appl. Opt. 45, 7005-7011 (2006). [CrossRef] [PubMed]
  25. V. V. Krishnamachari and E. O. Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007). [CrossRef]
  26. C. Liu, Z. Huang, F. Lu, W. Zheng, D. W. Hutmacher, and C. Sheppard, "Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging," Opt. Express 15, 4118-4131 (2007). [CrossRef] [PubMed]
  27. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  29. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003). [CrossRef]
  30. A. Volkmer, "Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy," J. Phys. D: Appl. Phys. 38, 59-81 (2005). [CrossRef]
  31. K. Takeda, Y. Ito, and C. Munakata, "Simultaneous measurement of size and refractive index of a fine particle in flowing liquid," Meas. Sci. Technol. 3, 27-32 (1992). [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics (7th edition, Cambridge University Press, Cambridge, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited