OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Low loss high index contrast nanoimprinted polysiloxane waveguides

Ting Han, Steve Madden, Mathew Zhang, Robbie Charters, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2623-2630 (2009)
http://dx.doi.org/10.1364/OE.17.002623


View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoimprint lithography is gaining rapid acceptance in fields as diverse as microelectronics and microfluidics due to its simplicity high resolution and low cost. These properties are critically important for the fabrication of photonic devices, where cost is often the major inhibiting deployment factor for high volume applications. We report here on the use of nanoimprint technology to fabricate low loss broadband high index contrast waveguides in a Polysiloxane polymer system for the first time.

© 2009 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 19, 2008
Revised Manuscript: February 1, 2009
Manuscript Accepted: February 2, 2009
Published: February 9, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Ting Han, Steve Madden, Mathew Zhang, Robbie Charters, and Barry Luther-Davies, "Low loss high index contrast nanoimprinted polysiloxane waveguides," Opt. Express 17, 2623-2630 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-4-2623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and Devices," Adv. Materials 14, 1339-1365 (2002). [CrossRef]
  2. R. Buestrich, F. Kahlenberg And M. Popall, P. Dannberg, R. Muller-Fiedler and O. Rosch, "ORMOCERs for Optical Interconnection Technology," J. Sol-Gel Sci. and Tech.  20,181-186 (2001). [CrossRef]
  3. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, "Low-loss passive polymer optical waveguides with high environmental stability," J. Lightwave Technol. 14,2338-2343 (1996). [CrossRef]
  4. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, "Polymeric Optical Waveguide Circuits Formed Using Silicone Resin," J. Lightwave Technol. 16, 1049-1055 (1998). [CrossRef]
  5. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, and T. Kurihara, "Polymeric arrayed-waveguide grating multiplexer with a wide tuning range," Electron. Lett. 33, 1547-1548 (1997). [CrossRef]
  6. A. W. Norris, J. V. DeGroot, T. Ogawa, T. Watanabe, T. C. Kowalczyk, A. Baugher, and R. Blum, "High reliability of silicone materials for use as polymer waveguides," Proc. SPIE 5212, 76-82 (2003). [CrossRef]
  7. e.g. see www.gemfire.com and T. C. Kowalczyk and R. Blum, "Polymer variable optical attenuator arrays: pathway from material platform to qualified telecom product," Proc. SPIE 5517, 50-61 (2004). [CrossRef]
  8. R. Charters, Redfern Polymer Optics Pty. Ltd., (personal communication, 2007).
  9. S. Madden, M. Zhang, B. Luther-Davies, and R. Charters, "Patterning of inorganic polymer glass waveguiding films by dry etching," Proc. SPIE 6801, 680107-1:7 (2008). [CrossRef]
  10. Y. Xia, G. M. Whitesides, "Soft Lithography," Annu. Rev. Mater. Sci. 28, 153-84 (1998). [CrossRef]
  11. D. Kim, W. Chin, S. Lee, S. Ahn, and K. Lee, "Tunable polymeric Bragg grating filter using nanoimprint technique", Appl. Phys. Lett. 88, 071120-1:3 (2006). [CrossRef]
  12. L. A.  Rogers, M.  Meier, A.  Dodabalapur, E. J.  Laskowski, and M. A.  Cappuzzo, "Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates," Appl. Phys. Lett.  74, 3257-3259 (1999). [CrossRef]
  13. Y.  Huang, G. T.  Paloczi, A.  Yariv, C.  Zhang, L. R.  Dalton, "Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography," J. Phys. Chem. B  108, 8606-8613 (2004).
  14. G. T.  Paloczi, Y.  Huang, A.  Yariv, J.  Luo and A. K. Y.  Jen, "Replica-molded electro-optic polymer Mach-Zehnder modulator," Appl. Phys. Lett.  85, 1662-1664 (2004). [CrossRef]
  15. S. Kopetz, D. K. Cai, E. Rabe, and A. Neyer, "PDMS-based optical waveguide layer for integration in electrical-optical circuit boards," AEU-Int.J. Electron. Commun. 61, 163-167 (2007). [CrossRef]
  16. S. Kopetz, E. Rabe, W. J. Kang, and A. Neyer, "Polysiloxane optical waveguide layer integrated in printed circuit board," Electron. Lett. 40, 668-669 (2004). [CrossRef]
  17. W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, "Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials," IEEE Photon. Technol. Lett. 16, 1888-1890 (2004). [CrossRef]
  18. A. Neyer, S. Kopetz, E. Rabe, W. J. Kang, S. Tombrink, "ElectricalOptical Circuit Board using Polysiloxane Optical Waveguide Layer," Electronic Components and Technology Conference, 2005. Proceedings. 55th. 2005
  19. M. Vogler, S. Wiedenberg, M. Muhlberger, I. Bergmair, T. Glinsner, H. Schmidt, E. Kley, and G. Grutzner, "Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography," Microelectron. Eng. 84, 984-988 (2007). [CrossRef]
  20. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000). [CrossRef]
  21. P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt. 10, 2395-9 (1971). [CrossRef] [PubMed]
  22. R. A. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. B. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, "Ultralow Loss High Delta Silica Germania Planar Waveguides," J. Electrochem. Soc. 151, G541-G547 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited