OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Analog mean-delay method for high-speed fluorescence lifetime measurement

Sucbei Moon, Youngjae Won, and Dug Young Kim  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2834-2849 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new high-speed lifetime measurement scheme of analog mean-delay (AMD) method which is suitable for studying dynamical time-resolved spectroscopy and high-speed fluorescence lifetime imaging microscopy (FLIM). In our lifetime measurement method, the time-domain intensity signal of a fluorescence decay is acquired as an analog waveform. And the lifetime information is extracted from the mean temporal delay of the acquired signal. Since this method does not rely on the single-photon counting technique, the signals of multiple fluorescence photons can be acquired simultaneously. The measurement speed can be increased easily by raising the fluorescence intensity without a photon-rate limit. We have investigated various characteristics of our method in lifetime accuracy and precision as well as measurement speed. It has been found that our method can provide excellent measurement performances in various aspects. We have demonstrated a high-speed measurement with a high photon detection rate of ~108 photons per second with a nearly shot noise-limited photon economy. A fluorescence lifetime of 3.2 ns was accurately determined with a standard deviation of 3% from the data acquired within 17.8 μs at a rate of 56,300 lifetime determinations per second.

© 2009 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:

Original Manuscript: December 18, 2008
Revised Manuscript: February 9, 2009
Manuscript Accepted: February 10, 2009
Published: February 11, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Sucbei Moon, Youngjae Won, and Dug Young Kim, "Analog mean-delay method for high-speed fluorescence lifetime measurement," Opt. Express 17, 2834-2849 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. C. Gerristen, A. Draaijer, D. J. van den Heuvel, and A. V. Agronskaia, "Fluorescence lifetime imaging in scanning microscopy" in Handbook of Biological Confocal Microscopy, 3rd Ed., J. B. Pawley, ed. (Springer, New York, 2006).
  2. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci.  3, 795-801 (2004). [CrossRef] [PubMed]
  3. Klaus Suhling, Paul M. W. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochem. Photobiol. Sci. 4, 13-22 (2005). [CrossRef]
  4. P. Herman, H.-J. Lin, and J. R. Lakowicz, "Lifetime-based imaging" in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, Boca Raton, 2003). [CrossRef]
  5. E. A. Jares-Erijman and T. M. Jovin, "FRET imaging," Nat. Biotechnol. 21, 1387-1395 (2003). [CrossRef] [PubMed]
  6. D. K. Nair, M. Jose, T. Kuner, W. Zuschratter, and R. Hartig, "FRET-FLIM at nanometer spectral resolution from living cells," Opt. Express 14, 12217-12229 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12217. [CrossRef] [PubMed]
  7. W. Zhong, M. Wu, C. Chang, K. A. Merrick, S. D. Merajver, and M. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-18220. [CrossRef] [PubMed]
  8. D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, "High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events," Opt. Express 15, 15656-15673 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15656. [CrossRef] [PubMed]
  9. K. Cralsson and J. Philip, "Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques," Proc. SPIE 4622, 70-78 (2002).
  10. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, "Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution," J. Microsc. 206, 218-224 (2002). [CrossRef] [PubMed]
  11. T. H. Chia, A. Williamson, D. D. Spencer, and M. J. Levene, "Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding," Opt. Express 16, 4237-4249 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4237. [CrossRef] [PubMed]
  12. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, "Fluorescence lifetime imaging by time-correlated single-photon counting," Microsc. Res. Tech. 63, 58-66 (2003). [CrossRef] [PubMed]
  13. W. Becker and A. Bergmann, "Timing stability of TCSPC experiments," Proc. SPIE 6372, 637209 (2006). [CrossRef]
  14. A. Schönle, M. Glatz, and S. W. Hell, "Four-dimensional multiphoton microscopy with time-correlated single-photon counting," Appl. Opt. 39, 6306-6311 (2000), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-39-34-6306. [CrossRef]
  15. D. McLoskey, D. J. S. Birch, A. Sanderson, K. Suhling, E. Welch, and P. J. Hicks, "Multiplexed single-photon counting. I. A time-correlated fluorescence lifetime camera," Rev. Sci. Instrum. 67, 2228-2237 (1996). [CrossRef]
  16. R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, "Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera," Rev. Sci. Instrum. 74, 2714-2721 (2003). [CrossRef]
  17. C. J. de Grauw and H. C. Gerritsen, "Multiple time-gate module for fluorescence lifetime imaging," Appl. Spectrosc. 55, 670-678 (2001), http://www.opticsinfobase.org/as/abstract.cfm?URI=as-55-6-670. [CrossRef]
  18. E.-S. Kwak, T. J. Kang, and D. A. Vanden Bout, "Fluorescence lifetime imaging with near-field scanning optical microscopy," Anal. Chem. 73, 3257 -3262 (2001). [CrossRef] [PubMed]
  19. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw, "High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging," Opt. Lett. 29, 2249-2251 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-19-2249. [CrossRef]
  20. A. Esposito, T. Oggier, H. Gerritsen, F. Lustenberger, and F. Wouters, "All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing," Opt. Express 13, 9812-9821 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9812. [CrossRef] [PubMed]
  21. A. I. Zverev, Handbook of Filter Synthesis (John Wiley & Sons, Hoboken, 2005).
  22. ISS, Inc, "Lifetime data of selected fluorophores," http://www.iss.com/resources/fluorophores.html.
  23. H. Stark and J. W. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd Ed., (Prentice-Hall, Upper Saddle River, 2002).
  24. S. Moon and D. Y. Kim, "Analog single-photon counter for high-speed scanning microscopy," Opt. Express 16, 13990-14003 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13990. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited