OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Quasi one-dimensional light beam generated by a graded-index microsphere

Soon-Cheol Kong, Allen Taflove, and Vadim Backman  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 3722-3731 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (617 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optically illuminated micron-scale dielectric sphere can generate a photonic nanojet – a nonresonant propagating beam phenomenon of high amplitude, narrow waist, and substantial sensitivity to the presence of nanometer-scale particles and geometric features located within the beam. Via three-dimensional finite-difference time-domain computational electrodynamics modeling of illuminated graded-index microspheres, we have found that the useful length of a photonic nanojet can be increased by an order-of-magnitude to approximately 20 wavelengths. This is effectively a quasi one-dimensional light beam which may be useful for optical detection of natural or artificially introduced nanostructures deeply embedded within biological cells. Of particular interest in this regard is a potential application to visible-light detection of nanometer-scale anomalies within biological cells indicative of early-stage cancer.

© 2009 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(230.3990) Optical devices : Micro-optical devices
(290.1350) Scattering : Backscattering

ToC Category:
Optical Data Storage

Original Manuscript: December 4, 2008
Revised Manuscript: January 18, 2009
Manuscript Accepted: January 19, 2009
Published: February 25, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Soon-Cheol Kong, Allen Taflove, and Vadim Backman, "Quasi one-dimensional light beam generated by a graded-index microsphere," Opt. Express 17, 3722-3731 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005). [CrossRef] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005). [CrossRef] [PubMed]
  4. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005). [CrossRef]
  5. Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006). [CrossRef] [PubMed]
  6. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  7. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  8. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007). [CrossRef]
  9. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: Example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007). [CrossRef] [PubMed]
  10. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007). [CrossRef]
  11. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007). [CrossRef] [PubMed]
  12. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007). [CrossRef] [PubMed]
  13. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008). [CrossRef] [PubMed]
  14. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008). [CrossRef]
  15. S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008). [CrossRef]
  16. E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008). [CrossRef]
  17. Z. Chen, H. Chu, and S. Li, "Optical metrology using a photonic nanojet," U.S. Patent 7,394,535 (2008).
  18. X. Cui, D. Erni, and C. Hafner, "Optical forces on metallic nanoparticles induced by a photonic nanojet," Opt. Express 16, 13560-13568 (2008). [CrossRef] [PubMed]
  19. S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008). [CrossRef] [PubMed]
  20. A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200-14212 (2008). [CrossRef] [PubMed]
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).
  22. S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008). [CrossRef]
  23. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  24. J. F. Poco and L. W. Hrubesh, "Method of producing optical quality glass having a selected refractive index," U.S. Patent 6,158,244, (2008).
  25. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shavaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1993).
  26. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099 (1983). [CrossRef] [PubMed]
  27. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, New York, 1982).
  28. H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited