OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes

Gianmarco Vizzeri, Madhusudhanan Balasubramanian, Christopher Bowd, Robert N. Weinreb, Felipe A. Medeiros, and Linda M. Zangwill  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 4004-4018 (2009)
http://dx.doi.org/10.1364/OE.17.004004


View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB) Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study examines the ability of RTVue, Cirrus and Spectralis OCT Spectral domain-optical coherence tomographs (SD-OCT) to detect localized retinal nerve fiber layer defects in glaucomatous eyes. In this observational case series, four glaucoma patients (8 eyes) were selected from the University of California, San Diego Shiley Eye Center and the Diagnostic Innovations in Glaucoma Study (DIGS) based on the presence of documented localized RNFL defects in at least one eye confirmed by masked stereophotograph assessment. One RTVue 3D Disc scan, one RTVue NHM4 scan, one Cirrus Optic Disk Cube 200×200 scan and one Spectralis scan centered on the optic disc (15×15 scan angle, 768 A-scans x 73 B-scans) were obtained on all undilated eyes within a single session. Results were compared with those obtained from stereophotographs. In 6 eyes the presence of localized RNFL defects was detected by stereophotography. In general, by qualitatively evaluating the retinal thickness maps generated, all SD-OCT instruments examined were able to confirm the presence of localized glaucomatous structural damage seen on stereophotographs. This study confirms SD-OCT is a promising technology for glaucoma detection as it may assist clinicians identify the presence of localized glaucomatous structural damage.

© 2009 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
OCT in Glaucoma

History
Original Manuscript: October 15, 2008
Revised Manuscript: January 18, 2009
Manuscript Accepted: February 19, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Citation
Gianmarco Vizzeri, Madhusudhanan Balasubramanian, Christopher Bowd, Robert N. Weinreb, Felipe A. Medeiros, and Linda M. Zangwill, "Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes," Opt. Express 17, 4004-4018 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-5-4004


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito. "Optical coherence tomography," Science 254,1178-81 (1991). [CrossRef] [PubMed]
  2. F. A. Medeiros, L. M. Zangwill, C. Bowd, R. M. Vessani, R. SusannaJr, and R. N. Weinreb. "Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography," Am. J. Ophthalmol. 139,44-55 (2005). [CrossRef] [PubMed]
  3. H. Bagga and D. S. Greenfield, "Quantitative assessment of structural damage in eyes with localized visual field abnormalities," Am. J. Ophthalmol. 137,797-805 (2004). [CrossRef] [PubMed]
  4. J. W. Jeoung, K. H. Park, T. W. Kim, S. I. Khwarg, and D. M. Kim. "Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects," Ophthalmology 112,2157-63 (2005). [CrossRef] [PubMed]
  5. D. L. Budenz, A. Michael, R. T. Chang, J. McSoley, and J. Katz. "Sensitivity and specificity of the StratusOCT for perimetric glaucoma," Ophthalmology 112,3-9 (2005). [CrossRef] [PubMed]
  6. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography," Arch. Ophthalmol. 113,586-96 (1995). [PubMed]
  7. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes," Ophthalmology 110,177-89 (2003). [CrossRef] [PubMed]
  8. G. Wollstein, H. Ishikawa, J. Wang, S. A. Beaton, and J. S. Schuman, "Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage," Am. J. Ophthalmol. 139,39-43 (2005). [CrossRef] [PubMed]
  9. T. Mumcuoglu, G. Wollstein, M. Wojtkowski, L. Kagemann, H. Ishikawa, M. L. Gabriele, V. Srinivasan, J. G. Fujimoto, J. S. Duker, and J. S. Schuman, "Improved visualization of glaucomatous retinal damage using high-speed, ultra-high resolution optical coherence tomography," Ophthalmology 115, 782-89 (2008). [CrossRef]
  10. T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123,1715-20 (2005). [CrossRef] [PubMed]
  11. J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, and M. E. Brezinski, "New technology for high-speed and high-resolution optical coherence tomography," Ann. N. Y. Acad. Sci. 838,95-107 (1998). [CrossRef] [PubMed]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-94 (2003). [CrossRef] [PubMed]
  13. M. E. Van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, "Recent developments in optical coherence tomography for imaging the retina," Prog. Retin. Eye Res. 26,57-77 (2007). [CrossRef]
  14. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewki, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biom. Opt. 7,457-63 (2002). [CrossRef]
  15. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29,480-82 (2004). [CrossRef] [PubMed]
  16. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-69 (2003). [CrossRef] [PubMed]
  17. G. Vizzeri, R. N. Weinreb, A. O. Gonzalez-Garcia, C. Bowd, F.A. Medeiros, P. A. Sample, and L. M. Zangwill, "Agreement between Spectral-Domain and Time-Domain OCT for measuring RNFL thickness," Br. J. Ophthalmol., In press (2009). [CrossRef] [PubMed]
  18. A.O Gonzalez-Garcia, G. Vizzeri, C. Bowd, F. A. Medeiros, L. M. Zangwill, and R. N. Weinreb, "Reproducibility of RTVue Retinal Nerve Fiber Layer Thickness and Optic Disc Measurements and Agreement with Stratus OCT Measurements," Am. J. Ophthalmol., In press (2009). [CrossRef] [PubMed]
  19. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Vis. Sci. 46,3393-3402 (2005) [CrossRef] [PubMed]
  20. U. E. Wolf-Schnurrbusch, V. Enzmann, C. K. Brinkmann, and S. Wolf. "Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination," Invest. Ophthalmol. Vis. Sci. 49,3095-3099 (2008). [CrossRef] [PubMed]
  21. A. A. Khanifar, A. F. Koreishi, J. A. Izatt, and C. A. Toth. "Drusen Ultrastructure Imaging with Spectral Domain Optical Coherence Tomography in Age-related Macular Degeneration," Ophthalmology 115,1883-90 (2008). [CrossRef] [PubMed]
  22. K. Yi, M. Mujat, B. H. Park, W. Sun, J. W. Miller, J. M. Seddon, L. H. Young, J. F. de Boer, and T. C. Chen. "Spectral Domain Optical Coherence Tomography for Quantitative Evaluation of Drusen and Associated Structural Changes in Non-Neovascular Age Related Macular Degeneration," Br. J. Ophthalmol. published online 3 Dec 2008; doi:10.1136/bjo.2008.137356 (2008). [PubMed]
  23. F. A. Medeiros, R. N. Weinreb, P. A. Sample, C. F. Gomi, C. Bowd, J. G. Crowston, and L. M. Zangwill, "Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma," Am. J. Ophthalmol. 123,1351-60 (2005). [CrossRef]
  24. L. Pieroth, J. S. Schuman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. Coker, C. Mattox, R. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. Swanson, "Evaluation of focal defects of the nerve fiber layer using optical coherence tomography," Ophthalmology. 106,570-9 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited