OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography

Boris Považay, Bernd Hofer, Cristiano Torti, Boris Hermann, Alexandre R. Tumlinson, Marieh Esmaeelpour, Catherine A. Egan, Alan C. Bird, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 4134-4150 (2009)
http://dx.doi.org/10.1364/OE.17.004134


View Full Text Article

Enhanced HTML    Acrobat PDF (7134 KB) Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent substantial developments in light source and detector technology have initiated a paradigm shift in retinal optical coherence tomography (OCT) performance. Broad bandwidth light sources in the 800 nm and 1060 nm wavelength region enable axial OCT resolutions of 2–3 µm and 5–7 µm, respectively. Novel high speed silicon based CMOS cameras at 800 nm and InGaAs based CCD cameras in combination with frequency domain OCT technology enable data acquisition speeds of up to 47,000 A-scans/s at 1060 nm and up to 312,500 A-scans/s at 800 nm. Combining ultrahigh axial resolution, ultrahigh speed OCT at 800 nm with pancorrected adaptive optics allows volumetric in vivo cellular resolution retinal imaging. Commercially available three-dimensional (3D) retinal OCT at 800 nm (20,000 A-scans/s, 6 µm axial resolution) is compared to ultrahigh speed 3D retinal imaging at 800 nm (160,000 A-scans/s, 2–3 µm axial resolution), high speed 3D choroidal imaging at 1060 nm (47,000 A-scan/second, 6–7 µm axial resolution) and cellular resolution retinal imaging at 800 nm using adaptive optics OCT at 160,000 A-scans/second with isotropic resolution of ~2 µm. Analysis of the performance of these four imaging modalities applied in normal and pathologic eyes focusing on motion artifact free volumetric retinal imaging and revealing novel, complementary morphological information due to enhanced resolution, speed and penetration is presented.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
OCT Technology

History
Original Manuscript: December 11, 2008
Revised Manuscript: February 7, 2009
Manuscript Accepted: February 19, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Citation
Boris Považay, Bernd Hofer, Cristiano Torti, Boris Hermann, Alexandre R. Tumlinson, Marieh Esmaeelpour, Catherine A. Egan, Alan C. Bird, and Wolfgang Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-5-4134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991). [CrossRef] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In-Vivo Retinal Imaging by Optical Coherence Tomography," Opt. Lett. 18,1864-1866 (1993). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116,113-115 (1993). [PubMed]
  4. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical coherence tomography of ocular disease (Slack Inc, Thorofare, New Jersey, 2004).
  5. W. Drexler, and J. G. Fujimoto, "State-of-the-art retinal optical coherence tomography," Prog Retin Eye Res 27,45-88 (2008). [CrossRef]
  6. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3,219-229 (1998). [CrossRef] [PubMed]
  7. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23,147-149 (1998). [CrossRef]
  8. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11,2753-2761 (2003). [CrossRef] [PubMed]
  9. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117,43-48 (1995). [CrossRef]
  10. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11,889-894 (2003). [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11,2183-2189 (2003). [CrossRef] [PubMed]
  12. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003). [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22,340-342 (1997). [CrossRef] [PubMed]
  14. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr/sup 4+/:forsterite laser," Opt. Lett. 22,1704-1706 (1997). [CrossRef]
  15. S. H. Yun, G. J. Tearney, J. F. de-Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express. 11,2953-2963 (2003). [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14,3225-3237 (2006). [CrossRef] [PubMed]
  17. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31,2975-2977 (2006). [CrossRef] [PubMed]
  18. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt Express 16,15149-15169 (2008). [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7,502-507 (2001). [CrossRef] [PubMed]
  20. H. C. Howland, and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am. 67,1508-1518 (1977). [CrossRef] [PubMed]
  21. J. Z. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14,2884-2892 (1997). [CrossRef]
  22. A. Roorda, and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397,520-522 (1999). [CrossRef] [PubMed]
  23. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10,405-412 (2002). [PubMed]
  24. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahmad, R. Tumbar, F. Reinholz, and D. R. Williams, "In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Express 14,7144-7158 (2006). [CrossRef] [PubMed]
  25. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29,2142-2144 (2004). [CrossRef] [PubMed]
  26. Y. Zhang, J. T. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13,4792-4811 (2005). [CrossRef] [PubMed]
  27. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14,4380-4394 (2006). [CrossRef] [PubMed]
  28. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13,8532-8546 (2005). [CrossRef] [PubMed]
  29. E. J. Fernandez, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt Express 16,11083-11094 (2008). [CrossRef] [PubMed]
  30. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. Russel, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11,1980-1986 (2003). [CrossRef] [PubMed]
  31. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid," Opt. Express 13,3252-3258 (2005). [CrossRef] [PubMed]
  32. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Binder, and W. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12,041211 (2007). [CrossRef] [PubMed]
  33. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 49,4545-4552 (2008). [CrossRef] [PubMed]
  34. R. Huber, D. Adler, V. Srinivasan, and J. G. Fujimoto, "Fourier Domain Mode Locking at 1050 nm for ultrahigh-speed Optical Coherence Tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 322049-2051 (2007). [CrossRef] [PubMed]
  35. K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proceedings of the National Academy of Sciences of the United States of America 103,5066-5071 (2006). [CrossRef] [PubMed]
  36. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31,2308-2310 (2006). [CrossRef] [PubMed]
  37. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14,8900-8917 (2006). [CrossRef] [PubMed]
  38. B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest Ophthalmol Vis Sci (to be published). [PubMed]
  39. M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Transactions on Signal Processing 40,2464-2482 (1992). [CrossRef]
  40. P. Thevenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Transactions on Image Processing 7,27-41 (1998). [CrossRef]
  41. "Safe Use of Lasers & Safe Use of Optical Fiber Communications," (American National Standard Institute - Z136 Committee, 2000), p. 168
  42. ICNIRP, "Revision of the Guidelines on Limits of Exposure to Laser radiation of wavelengths between 400nm and 1.4µm," in International Commission on Non-Ionizing Radiation Protection, H. P. Society, ed. (International Commission on Non-Ionizing Radiation Protection, 2000), pp. 431-440.
  43. A. M. Rollins, and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24,1484-1486 (1999). [CrossRef]
  44. R. Engbert, and R. Kliegl, "Microsaccades uncover the orientation of covert attention," Vision Research 43,1035-1045 (2003). [CrossRef] [PubMed]
  45. L. Ferman, H. Collewijn, and A. V. Van den Berg, "A direct test of Listing's law--II. Human ocular torsion measured under dynamic conditions," Vision Research 27,939-951 (1987). [CrossRef] [PubMed]
  46. S. J. Fricker, "Dynamic measurements of horizontal eye motion. I. Acceleration and velocity matrices," Invest Ophthalmol. 10,724-732 (1971). [PubMed]
  47. M. R. Harwood, L. E. Mezey, and C. M. Harris, "The spectral main sequence of human saccades," Journal of Neuroscience 19, 9098-9106 (1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited